<< Back to Final Report Metalworking Fluids Standards Advisory Committee


5.1 GENERAL INFORMATION

The committee reviewed information on the actions OSHA can take to address protection of employees. These options were investigated along with the topics of health effects, technological feasibility and economic feasibility to help the committee in its deliberations. The working group, Government Options, was charged with researching potential OSHA actions. In addition, OSHA staff and representatives of the Solicitor's office, Department of Labor, provided information.

5.2 SPEAKERS AND PRESENTATIONS

Assistant Secretary of Labor for OSHA, Charles Jeffress addressed the committee on what OSHA needed from the committee (M7:1). Acting Assistant Secretary of Labor for OSHA, Greg Watchman and Adam Finkel, OSHA Health Standards Office addressed the initial meeting of the committee (M1:1). Robert Burt, OSHA, provided some background on OSHA's requirements in his presentation of OSHA's work on feasibility (M2:4). Dan McCarthy, Lamb Technicon explained the impact of regulation on machine tool manufacturers. Dr. William Lucke, Cincinnati Milacron discussed voluntary standards in his presentation on fluid formulation. John Burke, Eaton, noted voluntary standards in his presentation on the MWFs in mid size companies. Dr. Larry Fine, NIOSH explained NIOSH's basis for a Recommended Exposure Limit. Susan Chastain, Department of Labor, explained the relationship between the Americans with Disabilities Act and the action of OSHA and employers.

5.3 BACKGROUND INFORMATION

Burt explained that OSHA regulates when there is a significant risk to workers and when the risk can be reduced substantially by measures that are technologically and economically feasible (M2:4). Infante explained that OSHA has to act in some way if a substance is on their regulatory agenda (M7:26). Mirer explained that the UAW recommended 0.5 mg/m3 as a provisional limit until a complete review of the health effects and feasibility could be done (M2:12).

5.4 REVIEW OF AVAILABLE INFORMATION

5.4.1 What OSHA Needs from the MWFSAC

Jeffress hoped the MWFSAC could speed up the regulatory process (M7:1). He and Watchman provided examples of potential recommended actions (M1:1; 7:1). Watchman asked for consensus if possible (M1:1). Finkel urged the committee to be creative and stressed the importance of rigorous analytical work by the committee and OSHA (M1:2). Jeffress asked that the group not focus too much on whether the action should be a rule or a guideline but to provide best practices for someone who is trying to protect employees working with MWFs (M7:1). Sherman noted the importance of providing a clear rationale for any recommended action (M8:1).

5.4.2 Non-regulatory Approaches

5.4.2.1 Governmental Non-Regulatory Actions

According to Watchman, examples of non-regulatory approaches include: guidelines, technical manuals, directives, compliance materials and voluntary agreements with industry (M1:1)

The government options work group began by attempting to list all the actions which government could take regarding MWF, both regulatory and non-regulatory. "Non-regulatory" was initially taken to mean any activity other than promulgating an MWF standard. The exhaustive list was presented to the full committee. The list of non-regulatory actions includes: OSHA Guidelines for machining operations; OSHA Hazard Information Bulletin and other informational materials (OSHA or NIOSH); On-site Consultation; Targeted Training programs; SENSOR Program for machining facilities; adoption of industry guidelines; voluntary agreements; and/or OSHA recognition of existing industry consensus standards (M7:35, additional clarification at tenth meeting).

Michigan OSHA's SENSOR program was described in detail and is considered in this section, although aspects of it are regulatory. The summary of the SENSOR protocol was provided by the UAW (UAW, 1998). This program started by sending industrial hygiene compliance officers to facilities where physicians have reported MWF-related occupational asthma, and was expanded to a special emphasis program for all health inspections in MWF using facilities. The protocol consists of a symptom survey conducted by the industrial hygienist, review of injury and illness records, bulk samples and analysis of fluids, and air samples. These inspections could be the basis for general duty clause citations, if recommendations were not implemented. The work group identified, but did not endorse the possibility of an OSHA national emphasis program based on this model.

The work group suggested that an OSHA hazard information bulletin could be considered (M7:35).

Voluntary agreements between industry and OSHA to reduce exposure have been used in the past. The styrene agreement was provided as an example of non-regulatory actions. In exchange for an OSHA commitment not to include styrene in the initial list for the PEL update, industry agreed to medical surveillance, development of education and training programs, exposure assessment and reporting back to OSHA on exposure levels (M7:35).

The work group recommended that OSHA implement specialized on-site consultation and targeted training programs and not wait any longer to establish these (M7:35). The work group thought OSHA should use the Susan Harwood Training Grant program to provide directed grants to employers or employee groups for training of employers and employees in facilities where MWFs were used (M7:35).

Burke cited EPA voluntary programs such as: 3350, Green Lights, Energy Star, Waste Wise, Common Sense Initiatives and Strategic Goals Program (M6:29). He noted OSHA programs such as the styrene and asphalt agreement (M6:29).


5.4.2.2 Consensus Standards and other Non-governmental Voluntary Action

The government options group identified the following non regulatory actions taken by industry and other groups. These include industry guidelines like the ORC document, and existing industry consensus standards such as the ANSI Mist Control and ASTM sampling standards (M2:2; 3.12). Other initiatives could include industry certification programs.

Howell explained that ASTM is the largest voluntary standards development organization in the world with 132 committees and the E-34 committee addresses occupational health and safety issues (M4:4). About 10,000 standards exist with most addressing testing of materials (M4:4). Howell explained that ASTM has very strict rules for developing standards and different durations for provisional standards such as PS-42 (M4:4). A draft standard is developed by a committee of concerned individuals who get together to formulate a consensus approach, the draft moves up through the committee review hierarchy and is voted on by the ASTM Committee on Standards (M4:4). Input from members and nonmembers of ASTM can occur throughout the process (M4:4). The E-34 committee addresses a wide range of issues and has 10 subcommittees (M4:4). The E-34.50 subcommittee was formed in the early 1980's and is related to MWFs (M4:4). Howell explained that every standard has to be reviewed every 5 years and if no one reviews it, a standard is no longer active (M4:4). Provisional standards are reviewed every two years (M4:5). Every negative vote in an ASTM committee has to be addressed to move the standard forward (M4:5).

Howell cited relevant ASTM standards such as: the PS 42 -97ASTM Method For Measuring Metal Removal Fluid Aerosol In Workplace Atmospheres; E-1370, Guide for Air Sampling Strategies for Worker and Workplace Protection and E-1497, an old standard set for revision called Safe Use of Water-Miscible Metalworking Fluids (M4:4). Two standards aimed at formulators are E-1302 Standard Guide for Acute Animal Toxicity Testing of Water-Miscible Metalworking Fluids and E-1687 Test Method for Determining the Carcinogenic Potential of Base Oils Used in Metalworking Fluids (M4:4). The ten year old Standard Practice On Safe Use Of Water Miscible Fluids addresses concerns such as additives, biocide use, system design and worker protection (M4:5). Howell introduced two other method under development, the Provisional Practice for Personal Sampling and Analysis of Endotoxin in MWFs and Practice for Minimizing Aerosols in the Wet Metal Removal Environment (M4:5). Howell explained the dedication of the individuals involved keep these standards updated (M4:5). Mirer recommended that OSHA distribute the available consensus standards to expedite improvement (M4:5).

Lucke cited voluntary action of fluid formulators who worked individually and collectively and redesigned fluids as needed (M5:17,21). Movement away from chlorinated paraffins was due to regulatory forces while the nitrosamine is more driven by market forces (M5:24). The diethanolamine issue is in response to NTP studies and also market driven (M5:24).

Burke suggested a standard setting organization for MWFs (M6:29). He recommended that suppliers develop a code of standards and standard labels (M6:29). He urged conservative development of new products and limited on site chemical addition (M6:29). Burke cited organizations such as Underwriters Laboratory (UL) and National Electrical Manufacturers Association as groups who check quality and dictate design (M6:29). The accountability would be on these groups (M6:31). McCarthy noted that hazard analysis is part of ISO certification (M6:11).

5.4.3 Regulatory Approaches

Regulatory options according to the Government Options Work Group include: a complete OSHA health standard; a PEL with and without mandatory or voluntary ancillary provisions; OSHA PEL or standard for particular MWF components; general duty clause enforcement; compliance directives and cooperative abatement program (M3:12). A standard would require compliance directives and Mirer recommended that these be issued at the same time as any standard (M3:12)

Cooperative abatement programs are pre-citation commitments to institute controls (M3:12). Employers with a particular compliance program could get relief from penalties from OSHA as long as they were moving toward compliance (M6:23). A potential application to MWFs could include a provision that if the employer was above the PEL, but has implemented all feasible engineering controls, the employer could not be cited as long as respiratory protection is properly provided (M6:23). A sample cooperative abatement program was provided by Mirer (Mirer, 1998).

In the lead battery agreement, a compliance manual was developed by labor, industry and government (M5:23). OSHA conducted an outreach program and made a commitment not to cite those implementing directives in the manual (M6:23). Industries not in compliance had to develop their own compliance plans to be approved by OSHA (M6:23). Assessing these plans was difficult (M6:23).

Jeffress noted that standards and rules do alter behavior (M7:1). Jeffress explained that OSHA is looking more at systems approaches and cited the health and safety program standard development (M7:2).

White noted that OSHA has moved to performance based standards, allowing companies to determine how to attain the performance (M7:22). Due to the ASTM standards, it may be easier for industry to determine how to do sampling, according to White (M7:22). Kushner noted that the Industrial Truck Standard has language indicating that OSHA reviewed voluntary consensus standards and used them extensively in developing the standard (M7:26).

Other actions can include an EPA test rule for fluids and components or a relief rule for emissions (M3:12). An EPA product rule similar to the European machinery guideline could be used (M7:36).

Additional details on standards including typical components is provided in the handout of the Government Options Work Group (Government Options, 1998).


5.4.4 Risk Assessment

White explained that OSHA does not have a defined, documented method to determine quantitative risk and does not provide what factors are considered (M3:14). OSHA has to look at the quality of the support data, the reasonableness of the assessment, the fit to mathematical models and the type of health effects (M3:14). The benzene decision stated that OSHA must make a threshold finding that a worksite is unsafe due to the presence of significant risks (M3:14). It must show that there are ways to reduce these risks (M3:14).

A one in a billion risk is probably not significant but a 1 in 1000 is, according to White (M3:14). Sherman clarified that OSHA can regulate risks less than 1 in 1000 (M3:14). Infante explained that a qualitative assessment has to come before a quantitative one (M2:10).

White recommended that the committee identify risk assessment models instead of determining the significance of risk (M1:2). White was concerned that NIOSH did not sort out which studies are more reliable and more appropriate for risk assessment (M2:9).

White outlined that OSHA views the quantitative risk assessment results from several perspectives: what is the magnitude of risk posed at current exposure levels, what is the magnitude of the risk reduction expected at the new level, what is the residual risk at the proposed new level, is the remaining risk significant and what is the level of confidence in these projections (White, 1998).

Mirer explained that three levels of proof have to be shown: the validity of the risk assessment data Perry showed, the amount of proof needed to sustain a rule and the amount of proof for OSHA to go to rulemaking (M6:21). Perry noted that the cotton dust standard used a 5% cross shift decrement in lung function as an indicator (M6:21). Infante noted the Perry result showing residual problems at 0.5 mg/m3 (M9:25). The committee was asked by Infante if a 10% decrement in FEV1 was a material impairment of health (M9:25). Infante also asked if 10% of the population experienced this effect, would intervention be needed (M9:25).

Newman explained that a decrement of 10% in FEV1 would be significant (M9:25). White thought there were too many unanswered questions about the risk assessment (M9:26). Burch was opposed to basing a risk assessment on four studies in auto plants (M9:26). More on the non-cancer respiratory risk assessment is in Chapter Two, Health Issues.

Additional resources about risk assessment include Kamrin et al, Reporting on Risk, A Handbook for Journalists and Citizens(1995) and handouts of White and Perry (White, 1998; Perry, 1998). Additional references related to this Chapter are found in Attachment #6.


5.5 CONCERNS AND LIMITATIONS

5.5.1 Size of Business

Fine indicated that he believes the data from auto plants can be generalized to other similar processes (M2:2). Burch was concerned that the risk assessment done by Perry was based only on one sector of the economy (M6:39). Burch noted that not all exposure, and not all people are alike (M6:39).

Wegman explained it would be nice to know all the different exposures and forms of exposure in a variety of industries but we do not have that information (M6:41). He urged action on what is available (M6:41).

Frederick cited his almost monthly experiences in small plants where employers will not listen to health and safety complaints if they are in compliance with OSHA standards (M6:40). He questioned what happened in plants without unions (M6:41).

Cox noted that small business provisions can be included in standards (M3:15). He provided examples such as size exemptions, delayed start up and a thirty day per year exposure trigger (M3:15).

PMPA and PMA, two trade organizations representing small business, sought input regarding respiratory illnesses in companies their organizations represent. Companies responded based on either a review of their own records or best recollection (PMPA, 1999, PMA, 1999). Companies either composed their own letter, or used a form letter, and some provided exposure and related data (PMPA,1999, PMA, 1999). A review of PMPA's approximately 80 letters indicates 1 company with three respiratory complaints, a couple with air quality complaints and almost all without either recordable or other types of respiratory complaints (PMPA, 1999). A few dermatitis cases were noted (PMPA, 1999). Problems were solved by changing the type of MWF, better machine and fluid maintenance and improved ventilation (PMPA, 1999). Almost all companies had serious concerns about the implementation of a potential OSHA standard, citing concerns about cost, the need to hire professional help, local and international competitiveness and the need for more research (PMPA, 1999). A similar pattern was seen in approximately 42 letters from PMA members (PMA, 1999). More information on small business is found in the section, "Other Issues" provided below.


5.5.2 The Americans with Disabilities Act (ADA)


There was concern that an action by an employer who is complying with an OSHA regulation, such as medical surveillance, may be violating the ADA. Chastain explained that if an employer takes any action expressly required by another federal law or regulation, the employer does not violate the ADA (M8:13). She explained it is more difficult to defend the action if the employer acts on his own volition beyond what is expressly required, or if the agency issues a guideline or recommendation instead of a regulation (M8:13).

An example was given of an action such as an employer stating, after receiving medical surveillance data, that an individual is not qualified for a job for health reasons (M8:13). According to Chastain, if the testing was based on the requirements of an OSHA standard, the employer does not have to prove direct threat (M8:13). It is already determined to be job related and reasonable accommodation may still be a question (M8:13). If an action not to hire was based on voluntary approaches by industry, it would be more difficult to defend (M8:13).


5.5.3 Other Issues

The limitations of voluntary action and the limitations of the data on which decisions were made were concerns of the committee. Sheehan was concerned about the limits of Product Stewardship to be self policing (M5:24). Sheehan noted that voluntary action is potentially confusing as one tries to determine which voluntary standard to use and when (M6:35).

A study on Motivating Safety in the Workplace, conducted by the Insurance Research Council (IRI) found that when employees are committed to safe work practices, owners see less of a problem (IRI, 1995). For small businesses, 59% see the cost of worker's compensation as the most important reason to improve workplace safety, followed by 51% believing it is the right thing to do, 33% seeing that it increases long term profitability, and 31% acting because of state and federal safety rules (IRI, 1995). Additional information on related issues can be found in the IRI report (IRI, 1995).

Kushner was concerned about the OSHA IMIS dataset showing that 75% of workplaces are below 0.5 mg/m3 (M2:2). Teitelbaum and others were concerned about reporting on OSHA 200 logs (M5:27). Sherman noted the inadequacy of the OSHA 200 Iog and how if a disease has a non-occupational version, it is less apt to be recorded on the Iog (M5:27). Burch noted that many managers have difficulty filling out the logs (M5:28).Mirer noted the disparity between OSHA 200 logs and SENSOR data reports (M6:37). Chapter Two Health Issues has more information on this topic.

Clearer definitions of recordable occupational disease were needed according to Teitelbaum and Wegman (M5:27-28). White explained the development of a new OSHA recordkeeping standard and thought a list of diseases that are presumptively reportable could include those related to MWFs (M5:28).

The potential for lawsuits was brought up at various times by different committee members. Mirer provided an example of a lawsuit and thought suppliers, tool makers and fluid managers were at risk (M6:24). Lick questioned if companies really wanted to deal with product liability suits (M6:30). An article in the Wall Street Journal provides an example of this approach (Palmer, 1998).


5.6 LINKAGE OF DISCUSSIONS TO OSHA ACTION

NIOSH advocates a single Recommended Exposure Limit for all four types of MWFs, according to Fine (M2:1). According to NIOSH, it is prudent to lower exposure to all types of MWFs since evidence shows negative health endpoints with each of the four types of fluid (M2:1). NIOSH states a recommended exposure limit of 0.4 mg/m3 thoracic or 0.5 mg/m4 "total" (Fine, 1997). Reducing exposure is prudent because it will decrease the number of new cases of asthma, respiratory symptoms and acute pulmonary function changes (Fine, 1997). Exposure reduction to the PEL will likely decrease the risk of chronic airway disease and may affect either the risk of HP or the ability of affected individuals to return to work (Fine, 1997). An additional rationale is the concern about cancer based on substantial evidence prior to 1970 (Fine, 1997).

Howell highlighted the importance of voluntary, consensus standards and their role bringing the best practices forward (M4:5). Howell urged the committee to look at this as a viable approach that can be done more quickly and effectively than regulation (M4:5). Howell thought a voluntary program including analysis of hazards in the workplace, knowing the signs and symptoms of disease, engineering controls and fluid management would be more effective than waiting for a standard (M6:24).

O'Brien thought only a standard would work (M6:31).Frederick thought OSHA could act quickly and develop a standard for the committee to review (M6:40). Shortell explained that many progressive employers are managing fluids well but there are many who do not know what is going on and a standard would be for them (M7:23). Shortell noted that employers would not be trying to reduce exposure if they did not think there were health effects (M6:40).

Howell explained that there are health effects associated with MWFs but that he believed these effects are not solely due to the MWF itself but that operational factors also are involved (M7:32). Howell did not believe that the information presented by Perry's presentation in October showed that the effects rise to the level of significance that OSHA would hold meaningful in terms of a standard (M7:32).

White cited OSHA success with voluntary programs such as the meat packing agreement and workplace violence (M5:27). Cox gave examples of companies that had taken action without a standard (M3:15). Burke urged voluntary action as faster and better (M6:27). Burke thought actions such as the ORC document and pressure from the Big 3 on suppliers of fluids and products could go a long way (M6:30).

Infante noted that any voluntary agreement would require a target limit, air sampling, a time line, medical surveillance, training and fluid management (M6:31-32). Any ancillary actions such as respirator use would have to follow existing standards (M6:32).

Mirer noted that no other standard development process has been based on so much data (M4:3). Mirer thought it was most important to have engineering controls, fluid management and medical surveillance, and any PEL would not be as important except to determine if controls are working (M5:15). Mirer noted that if an environment was below a PEL, other program elements may still be needed (M6:24). Mirer suggested considering 95-99% compliant as good enough (M3:11). McGee was willing to consider 1.0 mg/m3 on old equipment and 0.5 mg/m3 on new equipment (M3:12).

Teitelbaum was concerned about the issue of action levels (M7:31). He acknowledged the difficulties of sampling and analysis (M7:31). He suggested a PEL of 0.5 mg/m3 for 45 days and action level of the same exposure but 30 days (M7:31). Mirer explained that different triggers could be used for medical surveillance and industrial hygiene surveillance (M7:31).

Mirer noted that a tripartite manual and catalog of engineering controls is essential for MWFs, whether or not cooperative compliance is adopted (M6:23). Mirer described his idea for an OSHA Special Emphasis Program for MWFs (M7:35).

Mirer stressed the importance of correct on-site consultation (M7:35). Anderson noted that special emphasis programs get information right out to the appropriate SIC codes (M7:36). Anderson explained that demand for consultation services outstrips available services (M7:36). Cox thought these services need more publicity (M7:36).

Mirer explained that the MWFSAC's product could be used as an OSHA best practices guideline or regulation (M7:35). Wegman recommended that any products of the committee be in the form of a guideline that OSHA could use as either a guideline or standard (M5:30).

Mirer noted that the styrene agreement only occurred when OSHA put styrene on its priority list (M6:31). The general duty clause is used as back up (M6:32). Mirer thought that it was to the fluid formulators' advantage to have a standard so customers will understand why a fluid management program is necessary (M5:26). He thought that without a standard, managers will alter the fluid instead of getting at the root cause of problems (M5:26).

A determination of risk is needed before any regulatory action, according to Burch (M3:13). Burch noted the difficulties of convincing a company to use its limited capital expenditure money to do something without a return on investment (M4:6). Burch warned that we should avoid trying to regulate stupidity (M5:3). Burch thought workman's compensation may have more clout than OSHA to make companies do what is right (M5:30).

Burch suggested allowing union negotiations to set limits (M3:12).

Shortell explained that there should not be one standard for unionized workers and another for non-unionized (M3:12).

Lick noted that if a regulation does not make sense, it will not make a difference (M3:16). Lick and Shortell pointed out the machine tool manufacturers' comments that without regulation there would be no pressure to enclose (M6:30,40). Lick thought a standard was the way to change the behaviors he saw in small business (M4:6). Lick wanted to also figure out a way to limit the overuse of biocides (M5:15).

There was discussion of how appropriate voluntary agreements between OSHA and stakeholders would be. Cox noted that organizations can not sign for members (M6:24). White explained that an agreement like the lead battery one would be impossible with MWFs due to the number of companies involved (M6:24). McGee thought there were too many companies involved for anything voluntary and White and Burke agreed that OSHA may find it all too difficult (M6:24,30). Shortell thought that trying to set up agreements with 100,000 employers would be too difficult (M6:40). White did not think the options shown in the OSHA video on partnerships could be used for MWFs due to the number of facilities involved (M7:26).

Related to systems management, Teitelbaum suggested that when everybody knows what has to be done, it should be all right to write a work practice document without data that explicitly shows the method works (M3:14). Teitelbaum recommended guidelines for physicians to diagnose MWF diseases (M5:30). Teitelbaum cited a study of the compliance with the ethylene oxide standard and was concerned that a standard is needed (M3:16). Teitelbaum doubted that OSHA would not set a standard based on dermatitis (M3:13). Teitelbaum explained that any regulatory action directed at just a particular material or substance was not going to be helpful to protect workers from MWFs (M5:20).

Newman noted that Burke provided information showing that mid size industry could not take care of MWFs themselves (M6:31). Lick explained that the machine tool manufacturers indicated that they needed a regulatory driver while the representatives from mid size business wanted voluntary actions (M6:39). Lick thought regulation drives improvement and noted how Grob and other companies responded to the European standards (M6:39).

White thought OSHA's power was very limited (M6:39). He was very concerned about the impact on mid size business, noting that the two companies represented had a long way to go to meet the NIOSH PEL (M6:39). White explained that the auto industry is already committed and small industry may not have much of a problem (M6:39). He thought there was enough pressure to develop a rational voluntary approach (M6:39). White explained that the ORC document was intended to be more useful than an OSHA standard and the document could be a catalyst for effective action (M8:6).

5.7 COMMITTEE DECISIONS AND RATIONALE


The committee addressed the issue of the need for a Permissible Exposure Limit, PEL.

The majority (12) opinion was that an MWF PEL as an 8 hour time weighted average was needed (M9:25). O'Brien cited the inappropriateness of the TLV for mineral oil mist with no additives (M9:25). This TLV was based on the health effect of lipid pneumonia and did not represent MWFs used today (M9:25). Wegman was concerned that the current Particulates Not Otherwise Classified (PNOC) designation was inadequate (M9:25). Newman cited the number of health effects that cause material impairment of health, burdening the American worker (M9:25).

The minority (Cox, Burch, Howell) opinion was that OSHA needed to prove by a risk assessment that a new PEL was needed(M9:25). Cox noted that a PEL probably was needed (M9:25). Howell thought there should be a lower exposure guide for metal removal fluid mist (M9:25). The lack of significant risk and the linkage of many problems with operational factors and not MWFs were given as rationale (M7:32). A voluntary approach was stressed.

After making the decision that a PEL was necessary, the committee determined what level to recommend.


The majority (10) viewed that the evidence pointed to 0.5 mg/m3(M9:26). O'Brien explained that 0.4 mg/m3 measured as thoracic particulate was a better surrogate (M9:26). Members cited studies on diminished lung function and the NIOSH Criteria Document (M9:26-27). Members urged that the value be based on an OSHA Risk Assessment (M9:26-27). Mirer, Teitelbaum, Day, Newman and Wegman noted that a PEL of 0.5 mg/m3 will not completely protect health (M9:26-27). Wegman emphasized that a PEL will not protect the skin (M9:27).

The minority (White, Howell, Lick) viewed the value as either between 0.5 and 1.0 mg/m3, or 1.0 mg/m3 (M9:26-27). They also urged that the value be based on an OSHA Risk Assessment (M9:26-27). Howell and White recommended a voluntary application of these values (M9:26-27). Howell stressed the importance of fluid management and noted that a PEL of 0.5 mg/m3 alone cannot protect against vapor or biological entities (M9:26-27).

Two members (Cox, Burch) did not have an opinion on what value should be proposed (M9:26-27).


Four members (Cox, Howell, O'Brien, Sheehan) viewed that a higher PEL could be listed for straight fluids (M9:26-27). Sheehan and Howell based their opinion on the health data, while O'Brien and Cox recognized the feasibility issues (M9:26-27). Lick noted that a dual standard would be difficult to address in plants with multiple fluid types (M9:27).

The committee determined if an action level is needed.

The majority (12) stated there should be an action level(M9:27). The rationale for an action limit includes concerns about the variability of exposure levels in industrial processes and of sampling techniques. A random sample as high as one half the PEL predicts that exposures greater than the PEL will occur. Triggers are needed for sampling as well as other actions such as medical surveillance in order to protect workers.

The minority (Howell) stated that there should not be an action level(M9:27). Sampling and analytical problems at lower than the PEL were cited. Voluntary approaches were emphasized.

Two members (Burch, Cox) had no comment (M9:27).


After determining that there should be an action level, the committee decided what that level should be.

The majority (8) viewed that 0.25 mg/m3 should be used as the action level(M9:27). This opinion was based on the traditional statistical approach of using half the PEL value (M9:27). Mirer noted an earlier vote on best practice for exposure assessment listing the action level as half the PEL (M9:27). Mirer explained that an action level detects and prevents over-exposure (M9:27). Sheehan was concerned about whether the sampling and analytical method could address values in this range (M9:27).

A minority (3- O'Brien, Wegman, Teitelbaum) viewed that the committee should not "tie OSHA's hands"(M9:27). O'Brien, Teitelbaum and Wegman were concerned about residual risk at 0.25 mg/m3 and Wegman asked that OSHA figure out better ways of addressing this issue (M9:27).

Howell had another minority view and thought the number should reflect the limits of the sampling and analytical method (M9:27).

Lick expressed a different minority opinion, noting that the action leve should be 0.5 mg/m3, since the action level becomes a de facto PEL (M9:27). Lick also noted the concerns about the sampling and analytical method and that without other components, a PEL and/or action level would fail (M9:27). There was some general consensus that OSHA should identify alternate triggers for action instead of an action level (clarification at tenth meeting).

Burch and Cox did not comment on the value proposed for an action level (M9:27).

The committee discussed the question of whether there should be a short term exposure limit, STEL (M9:28).

The majority (12) viewed that there was inadequate evidence to support a STEL (M9:28). Members were concerned about short term high exposures (M9:28). They noted anecdotal evidence of complaints of respiratory irritation for short term high exposures (M9:28). The concept of real time monitoring to determine short term exposures was supported by members to provide information on these conditions (M9:28). Burch noted that short run operations with a lot of opening and closing of doors produce peak exposures while continuous operations would have less of a problem with peak exposures (M9:28).

Three members (Teitelbaum, Day, McGee) had no opinion or comment (M9:28).

The committee members discussed if more than a PEL is necessary (M9:28-29). They discussed the importance of systems management of the MWFs and medical surveillance as supporting components (M9:28-29).

All members (15) noted the importance of including more than an exposure limit in any OSHA action concerning MWFs (M9:28-29). Howell explained that the combination of systems management and medical surveillance would accomplish more than a PEL (M9:29). White, Cox, Howell and Burch noted that a regulatory approach should not be used.

All members (15) clearly viewed that systems management is essential(M9:28-29). White noted that a PEL would go a long way to improve current conditions, but systems management was needed to protect against problems such as dermatitis (M9:28). Burch noted that endotoxin could not be addressed with a PEL, but systems management would reduce this problem (M9:29). Mirer explained that design criteria for equipment, process control to reduce misting, and fluid management should be the three major components of systems management and also urged the inclusion of general ventilation (M9:29). White, Cox, Howell and Burch noted that a regulatory approach should not be used.

There was some debate, but no consensus, about whether the specifics of systems management should be laid out by OSHA (M9:28-29). O'Brien urged complete flexibility while Sheehan and alternate member, Shortell, urged defined, quantitative criteria (M9:29). Newman suggested defined criteria with some flexibility built in for emerging technological improvements (M9:29).

The majority (11) stated that medical surveillance was needed (M9:28-29). White, Newman and Mirer noted that medical surveillance would capture problems not addressed by a PEL and systems management (M9:28-29). Mirer recommended active medical surveillance and noted that there will still be problems of under-reporting of health problems (M9:29).

The minority (Cox, Howell, Burch, White) was not against all medical surveillance but did not support the best practices version of a medical surveillance program.Cox urged a common sense approach to medical surveillance especially for small business (M9:29). Howell, Burch, Cox and White cautioned against using medical surveillance as part of a regulation (M9:28-29). The ORC version of a voluntary medical monitoring program was put forth as an alternative by some of those in the minority.

The committee discussed the form of action OSHA should take.

All members agreed that OSHA should act to address the issue of MWFs (M9:33-35). The majority (11) voted that an OSHA standard for MWFs is needed (M9:33-34). Anderson, O'Brien, Sheehan, and Wegman stated that the standard should include a PEL, systems management and medical surveillance (M9:33-34). O'Brien viewed that the specifics of the systems management should be in a non-mandatory appendix (M9:33). Mirer explained that the most critical parts of a standard are the PEL and exposure monitoring portions (M9:35).

Members provided some rationale for choosing a standard (M9:33-35). Mirer noted the wide range of epidemiological studies (M9:35). Mirer explained that the 0.5 mg/m3 value was determined by Morton Corn, former Assistant Secretary of Labor for OSHA, while Corn served on a GM health advisory board (M9:35). Mirer stated that a standard is needed for exposure reduction, medical surveillance and the commitment to spend the money needed to accomplish these objectives (M9:35).

McGee noted that a standard would promote compliance by employers and employees (M9:33). Day cited his own experience noting that employers only pay attention to standards (M9:34). Teitelbaum urged OSHA to provide a special emphasis program and cited inadequate MSDSs for MWFs (M9:35). Alternate member Shortell noted the difficulty linking stakeholders and OSHA for the development of any voluntary negotiation, and that employers only take standards seriously (M9:35). Lick opined that in time, a guideline might work, but at this time, only a standard would accomplish what is needed in industry (M9:33).


The minority (Burch, Cox, Howell, White) voted that OSHA should publish guidelines for MWFs instead of a standard (M9:33-34). Howell and White noted the complexity of promulgating a standard on MWFs (M9:34). Burch explained that OSHA would have to prove a clear cut risk for a standard (M9:34). White opined that although the whole compilation of health effects is compelling, only a few studies can be used in risk assessment (M9:34). Howell and White explained that a guideline could be implemented much quicker than a standard (M9:33-34). White noted that industry has shown in the ORC document that it is willing to act (M9:34). Howell urged adoption of a non-regulatory approach for users and product stewardship by suppliers (M9:33). The cost burden of a standard concerned White (M9:34). Burch urged sensible action, acknowledging that good employers will follow a guideline, while the bad ones will play the odds of an OSHA inspection (M9:34). Howell and White urged partnerships and cooperative efforts, and Cox provided examples of such in his organization (M9:34). Burch noted that over time, purchases of new machine tools will result in lower exposures (M9:34).

The issue of interim guidelines was discussed but not resolved by a vote (M9:33-35). Howell, Day and Sheehan thought interim guidelines until a standard is promulgated would be a good idea (M9:33-35). Sheehan opined that the committee could release its report as guidelines if OSHA does not act in a timely manner (M9:33-35). White suggested guidelines with the threat of a standard if guidelines did not work, and gave examples of guidelines that work (M9:34-35).

Teitelbaum and Mirer strongly disagreed with interim guidelines (M9:3435). Mirer explained that OSHA resources needed for standard promulgation would be used to develop the guideline (M9:35). Mirer urged the committee to disregard the time it takes to develop a standard (M9:35). Lick explained that OSHA could contract someone to develop a guideline (M9:35).