Systems of Safety
Applied to Focus-Four Hazard Categories
Four-Hour Workbook
First Edition

University of Medicine & Dentistry of New Jersey (UMDNJ),
School of Public Health (SPH)
Office of Public Health Practice (OPHP)

Copyright © 2011
UMDNJ School of Public Health
All rights reserved
Table of Contents

Introduction

Module One: Systems

Section One: Introduction: Systems of Safety page 5
Section Two: Employee Rights and Responsibilities page 7
Section Three: Hierarchy of Controls page 10
Section Four: Competent Persons page 12
Section Five: Systems Exercises page 12

Module Two: Falls

Section One: Systems of Safety Applied to Falls page 13
Section Two: Fall Protection page 15
Section Three: Module Two: Fall Protection Exercises page 21

Module Three: Electrical

Section One: Systems of Safety Applied to Electrical Hazards page 22
Section Two: Electrical Safety Exercises page 26

Module Four: Struck-by

Section One: Systems of Safety Applied to Struck-by Conditions page 33
Struck-by Hazards page 36
Section Nineteen: Struck-by Exercise page 43

Module Five: Caught-in-between

Section One: Systems of Safety Applied to Caught-in-between Hazards page 44
Section Two: Caught-in-between Hazard Training page 46
Section Four: Caught-in-between Exercise page 50

Appendices

Appendix A: Paying Attention to Angles page 50
Appendix B: Questionnaire Example page 55
Appendix C: Abbreviations page 56
Federal Disclaimer

This material was produced under grant number SH210055HO from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
University of Medicine and Dentistry of New Jersey (UMDNJ)

University of Medicine and Dentistry (UMDNJ) School of Public Health (SPH) Office of Public Health Practice (OPHP) offers health and safety training throughout New York and New Jersey in construction, general industry, hazardous materials operation, occupational safety and industrial hygiene. Courses offered by OPHP lead to nationally recognized certifications in the asbestos, lead, hazardous waste, occupational health, construction, and other industries. OPHP is centrally located in New Jersey for the convenience of New York City and New Jersey based students.

Programs and Services
For more information on courses offered by OPHP:
Website: http://ophp.umdnj.edu

Office of Public Health Practice
UMDNJ- School of Public Health Practice
683 Hoes Lane West, Suite 110
Piscataway, New Jersey, 08854
Phone (732) 235-9450

OPHP Staff
Koshy Koshy, Principal Investigator, koshyko@umdnj.edu
Mitchel A. Rosen, Co-Principal Investigator, mrosen@umdnj.edu
Elizabeth Marshall, Director of Evaluation
Mehul Patel, Program, Development Specialist
Gina Gazitano, Program Coordinator, gina.gazitano@umdnj.edu
Michael Presutti, Course Developer and Instructor
John Malool, Course Instructor
Catherine Segrest, Editor
Barry R. Weissman, Editor
Module One: Systems

Section One: Introduction: Systems of Safety

This systems approach to safety and health is a holistic way of looking at the construction processes we perform and determining how to apply means, methods and strategies to help make them flow more consistently. We start this discussion by examining what is meant by a system, and demonstrate how construction processes are systematic, consisting of many participants, materials and equipment. It is our goal to help all stakeholders realize that they must actively participate in the process in order for the system to work successfully. Knowing the respective roles within safety systems helps us work together to prevent and avoid incidents which are actually system malfunctions added to by the loss of life and great hardship. If participants, inside a given system, support each other, the system will stand successful and safely accomplish its collective goal, purpose or mission. When we work together on jobsites and know our role inside of our own system, we help perpetuate the greater system and ourselves.

The Occupational Safety and Health Administration requires that employers working in the United States assess the work environment, plan how to protect workers, train workers, and monitor their activities assuring the effectiveness of such safety and health measures. In many respects, this protective responsibly often extends to other entities such as the controlling contractor. Each employee engaged in construction activities should be able to recognize and avoid unsafe conditions and work with other participants to support the greater whole. This is best achieved, by implementing a system that clearly defines roles and responsibilities and encourages the active participation of all stakeholders.
How does a System of safety work?

- **Existing Documents**
 - Observe Means and Methods
 - Interview Personnel
 - Create Questionnaires
 - Hazards Specific to Trade
 - Environmental Sampling
 - Evaluate Tools and Equipment

- **Hierarchy of Controls**
 - Benchmark Best Practices
 - Set up Safety and Health Plan
 - Safety and Health Committees
 - Handbooks and Toolbox

- **Authorized OSHA Training**
 - Competent Person Training
 - Mentoring and Coaching
 - On the Job Training

- **Audits and Surveys**
 - Safety Logs / Daily Reports
 - Near Misses/Accidents
 - Regulatory Citations
 - Equipment Malfunctions
 - Dedicated Safety Meetings

- **Consultant & Committee Review Trials Benchmark**

- **Talks**
 - Formalize Operating Procedures
 - Equipment Program
 - Logistics and Estimates
 - Recordkeeping Programs

- **Toolbox Talks**
 - Skills Training-Hands On Practice Drills Rescue
 - Safety & Health Bulletins

- **Oversight of records and checklists**
 - Budgetary Status
 - OSHA Recordables
 - Debriefings
 - Employee Feedback

General Safety and Health System
Module One: Systems

Section Two: Rights and Responsibilities

What are some of your rights and responsibilities under OSHA?

Employers must:
The employer shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees.

Employers must:
Assess the workplace to determine if hazards are present, or are likely to be present, which necessitate the use of personal protective equipment (PPE). If such hazards are present, or likely to be present, the employer shall:

- Select, and have each affected employee use, the types of PPE that will protect the affected employee from the hazards identified in the hazard assessment;
- Communicate selection decisions to each affected employee; and
- Select PPE that properly fits each affected employee.

Employers must:
Inform employees of the existence, location and availability of your medical and exposure records when you first begin employment and at least annually thereafter. Employers also must provide these records to you or your designated representatives within 15 working days of your request.
Employees can:
File a complaint with OSHA if you believe that there are either violations of OSHA standards or serious workplace hazards.

Employees can:
Request information from their employers on safety and health hazards in the workplace, chemicals used in your workplace, tests the employer has done to measure chemical, noise and radiation levels, precautions they should take and procedures to be followed if you or other employees are involved in an incident or are exposed to hazardous chemicals or other toxic substances.

Employees can:
Request copies of appropriate standards, rules, regulations and requirements that your employer should have available at the workplace.

Employees can:
Review the Log and Summary of Occupational Injuries and Illnesses (OSHA 300) at a reasonable time and in a reasonable manner or have an authorized representative do so for you.

Employees can:
Access relevant exposure and medical records.

Employees can:
File a complaint with OSHA if you believe that there are either violations of OSHA standards
or serious workplace hazards and request OSHA to conduct an inspection.

Employees Should:
Get involved in any meetings or hearings to discuss any objections your employer has to OSHA’s citations or to changes in abatement deadlines.

Employees Can:
File a discrimination complaint within 30 days if you are punished or discriminated against for exercising your safety and health rights or for refusing to work (not guaranteed by the OSH Act) when faced with an imminent danger of death or serious injury and there is insufficient time for OSHA to inspect.

Module One: Systems
Section Three: Applying Controls
Once an employer has observed, assessed, and identified hazardous vulnerabilities within a company or organization, they must seek to control unsafe conditions or practices by deliberate and methodical controls. In a successful system of safety, you should be familiar with these controls and

A. Hierarchy of Controls
Performing a Job Hazard/Safety Analysis JHA/JSA is fundamental to controlling events that could cause harm to employees or property. Since it is always best to work through some delineated structure to avoid haphazard and arbitrary guesswork, safety and health professionals have long used the Job Hazard
Job Hazard Analysis (JHA), also commonly referred to as Job Safety Analysis (JSA) along with an applied hierarchy of controls. Just as a checklist may guide us through a walk-through audit on a worksite, so does the structure of a JHA/JSA and a hierarchy of controls guide us when applying controls to our workplaces. Keep in mind that you always want to start to select controls first from the most protective choices and work your way downward, only discounting more protective controls because of infeasibility. Nearly every job can be broken down into smaller job tasks or steps. When beginning a job hazard analysis, watch the employee perform the job and list each step as the worker takes it. Be sure to record enough information to describe each job action without getting overly detailed. Avoid making the breakdown of steps so detailed that it becomes unnecessarily long or so broad that it does not include basic steps. You may find it valuable to get input from other workers who have performed the same job. Later, review the job steps with the employee to make sure you have not omitted something. Point out that you are evaluating the job itself, not the employee’s job performance. Always keep in mind that employee evolvement is critical to ultimate success of our venture, so include the employee in all phases of the analysis—from reviewing the job steps and procedures to discussing uncontrolled hazards and recommended solutions.
Job Hazard/Safety Analysis Matrix

<table>
<thead>
<tr>
<th>Task</th>
<th>Hazard</th>
<th>Control</th>
<th>Means of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break tasks down to smaller sub-tasks.</td>
<td>List all possible associated hazards preferably in an order of severity</td>
<td>Use the Hierarchy of Controls</td>
<td>Should set out procedures that are easy to understand and accomplish in the field. Include the use equipment and requisite training and administrative</td>
</tr>
</tbody>
</table>

A job hazard analysis is a technique that focuses on job tasks as a way to identify hazards before they occur. It focuses on the relationship between the worker, the task, the tools, the work environment and the necessary steps to control a hazard.

B. Written Health and Safety Plan (HASP)

Committing a plan to writing formalizes and makes the plan easier to follow with less misunderstandings and interpretations. Imagine how distorted and convoluted the study of history or science might be if we learned everything solely by word of mouth; orally passed down from generation to generation. A written HASP helps us formalize: the hazards we assess at our worksites, the controls we choose, and a clear means of implementation.
Module One: Systems

Section Four: Competent Persons

Competent Person

The single most important person on any construction field crew is the Competent Person. OSHA defines a Competent Person as one who is capable of identifying existing and predictable hazards in the surroundings or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them. Various sections of the regulations have slightly more specific meanings for a Competent Person. Ideally, Competent Persons, whom interact constantly with employees under their supervision, have the unique ability to mentor and coach in real time. Given the important role of the Competent Person in any construction system, one can easily see why it is vital to have especially well trained and experienced Competent Persons. In many respects, they are the eyes and ears of the employer and represent the employer in the field.

Module One: Systems

Section Five: Systems Exercises

Group Exercise: Discuss with your team:

1. The most important rights under OSHA.
2. The difference between preventive controls and protective controls
3. The best qualities of your team’s ideal competent person.

Have you known any great competent persons in your life?
Module Two: Falls

Section One: Systems of Safety Applied to Falls

A. Leading Cause of Fatalities

Falls are the leading cause of fatalities in the construction industry. It is important that safety and health programs contain provisions to protect workers from falls on the job. The following hazards cause the most fall-related injuries:

- Unprotected sides, wall openings, roofs, floor holes,
- Improper scaffold construction,
- Unguarded or protruding steel rebar,
- Misuse of portable ladders.
B. Sample Fall Protection System of Safety

Are there any risks of falls on our jobsites? Have there been any fall related accidents or citations? Does the company have a Fall Protection Program that fits the tasks employees regularly perform? What Equipment does the company use? What do other companies do to protect workers from falls? Is our workforce trained and do they follow their training in the field? What are the attitudes and aptitudes of employees?

Can we eliminate fall hazards by prefabrication or substitution? Fall Protection Equipment Job specific Subpart M training Write Fall Program Create Fall Protection Field Checklists, Form, templates. Rescue Equipment Write recordkeeping harness inspection logs, safe work plan templates and pre-task surveys. Designate Competent Persons organization structure.

Perform Subpart M Training Competent Person Training Create Toolbox Talks Hands-on Harness Training Guardrail systems training Employee’s role in fall plan Practice Rescue Drills Safety & Health Bulletins

Perform frequent and regular inspections of sites. Review Competent Person daily pre-task inspections of fall protection controls. Frequent communications with fall protection competent persons. End of week employee fall protection debriefings Accident or incident investigations

Sample Fall Protection System
C. Sample Fall Protection Job Hazard Analysis

Fall Protection
Assessment of Hazards

<table>
<thead>
<tr>
<th>Task</th>
<th>Hazard</th>
<th>Control</th>
<th>Means of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting Steel</td>
<td>Falls to a lower level</td>
<td>1. Personal Fall Arrest System</td>
<td>1. Purchase PFAS equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Retractable lifelines</td>
<td>2. Train Workers to use PFAS equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Subpart M Training</td>
</tr>
<tr>
<td>Installing wire rope perimeter</td>
<td>Falls to below</td>
<td>1. Prefabrication of perimeter wire rope</td>
<td>1. Contract with steel fabricator to deliver steel with wire rope</td>
</tr>
<tr>
<td>protection</td>
<td></td>
<td>before steel is hoisted into place</td>
<td>perimeter protection in place or have iron workers install protections at ground level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>before hoisting into place.</td>
</tr>
</tbody>
</table>

PFAS – Personal Fall Arrest System

Module Two: Falls

Section Two: Fall Protection Training

A. The Guardrail System

A guardrail system in an engineering control with a top-rail varying from 39 to 45 inches at it’s height and have a toeboard, which prevents debris and tools from falling to lower levels and a mid-rail.
B. Housekeeping

All places of employment, passageways, storerooms, and service rooms shall be kept clean and orderly and in a sanitary condition. The floor of every workroom shall be maintained in a clean and, so far as possible, a dry condition. Every floor, working place and passageway shall be kept free from protruding nails, splinters, holes, or loose boards. Good housekeeping prevents fires. Bad housekeeping is a breeding place for all types of accidents.

• Top rails between 39 and 45 inches tall
• Toeboards at least 3 1/2 inches high
C. Certification of Fall Protection Training

Most contractors do not know that fall protection training is required for almost all workers on construction sites and that employers shall have a written certification record that will contain the:

- Name or other identity of the employee trained,
- date of the training,
- signature of the person who conducted the training or the signature of the employer. (If the employer relies on training conducted by another employer the certification record shall indicate the date the employer determined the prior training was adequate rather than the date of actual training.

D. Retraining of Fall Protection Training

Retraining: When the employer has reason to believe that an employee does not have the proper understanding and skill required by the fall protection training or when there are changes in the workplace, changes in the types of fall protection systems or equipment to be used render previous training obsolete; or inadequacies in employee's knowledge or behavior around protection systems or equipment indicate that the employee has not retained the requisite understanding or skill.

E. Parts of a Personal Fall Arrest System
F. Swing Hazards

- Minimize swing falls:
 - Work directly below the anchor.
 - Do not extend your work zone more than 30° from the anchor.
 - Manage the slack in the rope
Swing hazard must be respected when working on roofs.
G. Competent Person Responsibility

In your fall protection training, all trainees must be made aware of their respective designated competent persons. The competent person:

- Has the knowledge and experience needed to identify fall hazards.
- Has authority to eliminate fall hazards.
- Has authority to stop work if unsafe conditions exist.
- Can evaluate fall hazards and protections.
- Assesses workers who use fall protection systems.
- Conducts safety inspections.

H. Ladders

Extension ladders should be used at a 4 to 1 pitch (1.2 to .3 m). For every 4 ft. (1.2 m) in height, the bottom of the ladder should be 1 ft. (.3 m) away from the structure.
I. Sag Angles

Sag Angle of horizontal life lines are very important because too tight of an angle greatly stress pressure on line.

![Diagram of 2 Degree Sag Angle](image1)

![Diagram of Anchor Loading Varies with Sag Angle of Horizontal Line](image2)

Module Two: Falls

Section Three: Fall Protection Group Exercise

1. Describe in order the best forms of fall protection.
2. What makes us so heavy when we fall and how much do we weigh when we are free falling?
3. Calculate the fall distance of a six foot worker wearing a six foot lanyard and deceleration device.
Module Three: Electrical

Section One: Systems of Safety Applied to Electrical Hazards

US Construction Electrocution Fatalities 2007

- Overhead lines 45%
- Contact with wiring, transformers or other 33%
- Machine, tool, appliance or light fixture 17%
- Lightening 3%
- Other 2%

Data Source: Bureau of Labor Statistics
Census of Fatal Occupational Injuries

A. Electrical Fatalities

☐ On average, nearly one worker per day is electrocuted.

☐ Electricity is dangerous and undetectable without instruments.

B. Electrical Injuries

Electricity has become essential to modern life. Perhaps because it is such a familiar part of our surroundings, it often is not treated with the respect it deserves. Safety
and health programs must address electrical incidents and the variety of ways electricity becomes a hazard. In general, OSHA requires that employees not work near any part of an electrical power circuit unless protected. The following hazards are the most frequent cause of electrical injuries:

- Contact with power lines.
- Lack of ground fault protection.
- Path to ground missing or discontinuous.
- Electrical equipment not used in a manner prescribed.
- Inappropriate use of extension and flexible cords.
- Working in and around water or damp conditions.
C. Sample System of Safety Applied to Electrical Hazards

- Are workers exposed to electrical hazards?
- Does the company have an electrical protection program?
- Are GFCI's used throughout jobsites?
- Are there regular inspections of extension cords, electrical tools, portable generators and other sources of electrical hazards including grounding?
- Does the company have a Lock-out-tag-out program?
- Has any worker ever received a shock on a jobsite?
- Are workers trained in how to identify and avoid electrical hazards?

- Write an electrical control program.
- Purchase Lock-out tag-out equipment and Ground-fault-circuit-interrupters.
- Create tool and extension cord maintenance checklists.
- Establish a written procedure to electrical hazards.

- Coordinate with Controlling Entity their obligations under contract to provide general electrical conditions and lighting.
- Designate Competent Persons organization structure for

- Electrical Hazard Awareness Training
- Competent Person Training
- Lock-Out Tag-out procedures

- Protocol for employees who receive an electrical shock.
- Tool maintenance
- Electrical fire hazards

- Perform daily inspections of extension chords.
- Review Competent Person daily pre-task inspections of electrical hazards controls.
- Frequent communications by competent persons.

- End of week electrical debriefings
- Accident or incident investigations

Sample Electrical Safety System
Electrical : Assessment of Hazards

<table>
<thead>
<tr>
<th>Task</th>
<th>Hazard</th>
<th>Control</th>
<th>Means of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire</td>
<td></td>
<td>1. Correct sized conductors</td>
<td>1. Follow applicable electric code for wire gauge size to amperage of circuit.</td>
</tr>
<tr>
<td>Electrical work</td>
<td>Shock Electrocution Indirect falls Burns</td>
<td>1. Lock-out–Tag Out</td>
<td>1. Create a full Lock-out tag-out program for electrical work 2. Train electricians in how to use a lock-out-tag our program</td>
</tr>
<tr>
<td>Fire</td>
<td></td>
<td>1. Correct sized conductors</td>
<td>1. Follow applicable electric code for wire gauge size to amperage of circuit.</td>
</tr>
</tbody>
</table>

GFCI – Ground Fault Circuit Interrupter
Module Two: Electrical

Section Two: Electrical Safety Training

A. Competent Person Responsibility

Inside of your electrical protection training all trainees must be made aware of their respective designated competent persons and know that the controlling contractor or qualified electrical contractor, who provides for general conditions concerning electricity, also has authority and responsibilities at their sites. The competent person:

- Performs daily inspections of extension cords.
- Reviews daily pre-task inspections of electrical controls.
- Assists with incident investigations.
- Develops an end of week electrical debriefing.

B. Electrical Terms

- Current -- electrical movement (measured in amps)
- Circuit -- complete path of the current. Includes electricity source, a conductor, and the output device or load (such as a lamp, tool, or heater)
- Resistance -- restriction to electrical flow
- Conductors – substances, like metals, with little resistance to electricity that allow electricity to flow
- Grounding – a conductive connection to the earth which acts as a protective measure
- Insulators -- substances with high resistance to electricity like glass, porcelain, plastic, and dry wood that prevent electricity from getting to unwanted areas.
C. The Electric Circuit

Simplified Analogy to an Electric Circuit

1. _______________________________
2. _______________________________
3. _______________________________
4. _______________________________
5. _______________________________
6. _______________________________

Note the similarities from an electrical circuit and what cycle.

D. Electric Shock

Shock Severity

Severity of the shock depends on:

Path of current through the body
Amount of current flowing through the body (amps)
Duration of the shocking current through the body,

LOW VOLTAGE DOES NOT MEAN LOW HAZARD

The National Safety Council estimates that approximately 300 people in the United States die each year as a result of an electric shock from low voltage systems (120 or 277 volt circuits). People become injured and death occurs when voltage pushes electrons through the human body, particularly through the heart.
Electric shock can damage the electrical rhythm inside of the heart which can lead to a heart attack, stroke, pulmonary embolism or a blood clot.

E. Ground Fault Circuit Interrupters
Protect you from shock by detecting difference in current between the black and white wires. If ground fault detected, GFCI shuts off electricity in 1/40th of a second. Use GFCI’s on all 120-volt, single-phase, 15- and 20-ampere receptacles, or have an assured equipment grounding conductor program.
F. Excavations pose danger from underground utilities.

Call Before You Dig
Before digging, the competent person should verify if there are any underground utilities such as electric, gas or water.
(Many states have a one-call phone number to provide a mark-out for the locations of utilities buried under and nearby a proposed excavation)

G. Overhead hazards
Overhead and buried power lines at your site are especially hazardous because they carry extremely high voltage. Fatal electrocution is the main risk, but burns and falls from elevations are also hazards. Using tools and equipment that can contact power lines increases the risk.

Examples of Equipment That Can Contact Power Lines

- Aluminum paint rollers
- Backhoes
- Concrete pumpers
- Cranes
- Long-handled cement finishing floats
- Metal building materials
- Metal ladders
- Raised dump truck beds
- Scaffolds
If you are ever adjacent to electrically charged equipment, such as a crane or excavator, it is recommended that you place your feet and legs close together and take short shuffle-steps away from the point of contact and move in a semicircular direction. Larger steps can connect rings of electrical differential.

H. Lightning

Lightning of course is the oldest known electrical hazard and can affect us at home at play as well as on at work. There are good established rules of thumb concerning lightning:
Lightning Decision Tree

1. "If you can see it, flee it; If you can hear it, clear it."
2. Weather Channel; NOAA Weather Radio
3. Make decision to suspend activities and notify people.
4. The 30/30 Rule says to shut down when lightning is six miles away. Use a "flash to bang" (lightning to thunder) count of five seconds equals one mile (10 = 2 miles; 20 = 4 miles; 30 = 6 miles).
5. Notify people via radio, siren or other means.
6. Move to safe location A large permanent building or metal vehicle is best.
 - Unsafe places are near metal or water; under trees; on hills; near equipment, in open areas, roof tops.
7. Reassess the hazard. It’s usually safe after no thunder and no lightning have been observed for thirty minutes. Be conservative here.

Module Three: Electrical

Section Three: Group Electrical Safety Exercise

Each group should make a list of various electrical controls and affix a label to them such as elimination, engineering, mitigation, then give each control a score accordingly: ten (10) points for types of elimination controls, seven points for an engineering control and (5) points for a mitigation control. Try and make the list as long as possible and be creative.
Module Four: Struck-by

Section One: Systems of Safety Applied to Struck-by Hazards

A. Struck-by Injuries and Fatalities

Struck-by objects are a leading cause of construction-related deaths. Approximately 75% of struck-by fatalities involve heavy equipment such as trucks or cranes. The number of workers fatally struck by a vehicle was at a seven-year high in 1998. Safety and health programs must take into account the many ways struck-by accidents can occur. One in every four struck-by vehicle deaths involves construction workers, more than any other occupation. In a very real sense, struck-
by hazards represent sources of potential energy which can be quantified at our worksites when we perform an assessment. The following related hazards commonly cause struck-by injuries and fatalities:

- Falling objects.
- Rigging failure.
- Loose or shifting materials.
- Tip over or malfunction.
- Lack of overhead protection.
- Vehicle and equipment strikes.
- Backing incidents.
- Workers on foot.
- Flying objects.
- Masonry walls tipping over.
B. A Sample Struck-by System of Safety

Are workers exposed to overhead falling hazards? Does the company have a struck-by hazard protection program? Do workers work around vehicles or machinery that can strike them such as trucks, excavations, road traffic?

Are workers trained in how to rig materials to be lifted? Is there an inspection processes necessary for safely storing and moving materials and equipment? Assess all hazardous sources of energy.

Write an struck by program. Purchase PPE such as safety glasses, goggles, hardhats, high visibility vest. Purchase new rigging equipment. Establish a written procedure to coordinate with Controlling.

Entity their obligations when working with your employees to protect them. Designate Competent Persons who understand struck-by hazards and rigging of loads and storage.

Rigging Class
Competent Person Training
Personal Protection Equipment training.
Tool box talks

Job site orientation for struck-by hazards.
Control Access Zone Training
Limited Access Zone Training

Perform daily inspections of rigging equipment.
Review Competent Person daily pre-task inspections of ppe and overhead controls.
Frequent communications

with protection competent persons.
End of week employee debriefings
Accident or incident, near miss investigations

Sample Struck-by Safety System
C. Sample Struck-by Job Hazard Analysis

Struck-by Assessment of Hazards

<table>
<thead>
<tr>
<th>Task</th>
<th>Hazard</th>
<th>Control</th>
<th>Means of Implementation</th>
</tr>
</thead>
</table>
| Walking around construction site | 1. Struck by falling and flying objects
2. High visibility vests.
3. Establish safety work zones for rigging loads, overhead hazards.
4. Establish Limited/Controlled Access Zones | 1. Purchase PPE and train workers when and how to wear and maintain them.
2. Coordinate various safety zones on site with controlling entity.
3. Train workers who rig or store materials on the proper means and methods. |
cliff, it could also be the powder actuated projectile (a bullet). Other struck by incidents could include:

- Falling objects.
- Rigging failure.
- Loose or shifting materials.
- Tip over or malfunction.
- Lack of overhead protection.
- Vehicle and equipment strikes.
- Backing incidents.
- Workers on foot.
- Flying objects.
- Masonry walls tipping over.

B. Struck-by Rigging Failures

Before starting any hoisting activity the firm, company or property owner, known as the Controlling Entity must provide a clear, firm, drained and graded area and maintains a controlled access into various fall and swing zones. The Controlling Entity provides coordination and pre-pick planning. Whenever something is hoisted, you should have someone in charge that has the knowledge, skill and ability to perform the following:

- Know the weight of the load
- Know the center of gravity of the load.
- Make load attachment above the center of gravity of the load.
- Select hitch that will hold and control.
☐ Know the rated capacity of slings and hardware.
☐ Select sling best suited for load.
☐ Inspect all rigging before the lift.
☐ Protect sling from sharp surfaces.
☐ Proper calculation of increased tension caused by sling angles (on all rigging components!).
☐ 10. Allow for proper D/d ratio (the D/d Ratio is the ratio of the diameter around which the sling is bent divided by the body diameter of the sling.)
☐ Calculate reductions when using choker hitch.

C. Vehicles are very dangerous

If vehicle safety practices are not observed at your site, you risk being pinned between construction vehicles and walls, struck by swinging backhoes, crushed beneath overturned vehicles, you risk being struck by trucks or cars.

How Do I Avoid Hazards?

☐ Wear seatbelts

☐ Check vehicles before each shift to assure that all parts and accessories are in safe operating condition.

☐ Do not drive a vehicle in reverse gear with an obstructed rear view, unless it has an audible reverse alarm, or another worker signals that it is safe.

☐ Drive vehicles or equipment only on roadways or grades that are safely constructed and maintained.
- Make sure that you and all other personnel are in the clear before using dumping or lifting devices.

- Lower or block bulldozer and scraper blades, end-loader buckets, dump bodies, etc., when not in use, and leave all controls in neutral position.

- Set parking brakes when vehicles and equipment are parked, and chock the wheels if they are on an incline.

- All vehicles must have adequate braking systems and other safety devices.

- Haulage vehicles that are loaded by cranes, power shovels, loaders etc., must have a cab shield or canopy that protects the driver from falling materials.

- Do not exceed a vehicle’s rated load or lift capacity.

- Do not carry personnel unless there is a safe place to ride.

- Use traffic signs, barricades or flaggers when construction takes place near public roadways.

- Workers must be highly visible in all levels of light. Warning clothing, such as red or orange vests, are required; and if worn for night work, must be of reflective material.
Blind Spots: If the Driver doesn’t see the Spotter, the driver should stop the vehicle or equipment.

Conspicuity Class	**Use Description**
1 | - Worker can give full and undivided attention to approaching traffic.
- Ample separation between worker and vehicular traffic.
- Background is not too complex.
- Vehicle/equipment speeds do not exceed 25 mph.

2 | - Greater visibility is desired during inclement weather.
- Complex backgrounds are present
- Employees perform tasks that divert attention away from approaching vehicles.
- Vehicle/equipment speeds exceed 25 mph, but less than 50 mph.
- Work activities take place in or near vehicle traffic space.

3 | - Vehicle/equipment speeds exceed 50 mph.
- Worker and vehicle operator have high task loads.
- Wearer must be conspicuous through the full range of body motions at a minimum of a ½ mile (360 m) and must be identifiable as a person.

High visibility clothing.
D. Wire Ropes

Wire ropes act like a machine in that they have many moving parts that all must work together to perform a function (lifting and hoisting). If one part of a machine is broken the rest of the machine can malfunction or works harder than it must to compensate for the damaged parts of the machine. So if you see damaged wire ropes that are rusted, kinked, broken, crushed or bird-caging (unwinding) you should bring this to the attention of your competent person.

Can you tell the different parts of this wire rope machine?
E. Masonry Walls
Constructing concrete and masonry walls is especially dangerous because of the tremendous loads that need to be supported. There are risks of major accidents, and even death, when jacks or lifting equipment are used to position slabs and walls, or when shoring is required until structures can support themselves.

How Do I Avoid Hazards?

☐ Do not place construction loads on a concrete structure until a qualified person indicates that it can support the load.

☐ Adequately shore or brace structures until permanent supporting elements are in place, or concrete has been tested to assure sufficient strength.

☐ Only allow those who are essential to and actively engaged in construction or lifting operations to enter the work area.

☐ Take measures to prevent unrolled wire mesh from recoiling, such as securing each end or turning the roll over.

☐ Do not load lifting devices beyond their capacity.

☐ Use automatic holding devices to support forms in case a lifting mechanism fails.

F. Struck by Protections

☐ Use safety glasses, goggles, face shields, etc., where machines or tools may cause flying particles.

☐ Inspect tools, such as saws and lathes, to insure that protective guards are in good condition.

☐ Make sure you are trained in the proper operation of powder actuated tools.
Secure tools and materials to prevent them from falling on people below.

Barricade hazard areas and post warning signs.

Use toeboards, screens, or guardrails on scaffolds to prevent falling objects.

Use debris nets, catch platforms, or canopies to catch or deflect falling objects.

Reduce compressed air used for cleaning to 30 psi, and only use with appropriate guarding and protective equipment.

Never clean clothing with compressed air.

Module Four: Struck-by

Section Three: Struck-by Exercise

As a group exercise, discuss the “good, better, best” measures that can protect you and other workers on a jobsite.
Module Five: Caught-in-between

Section One: Systems of Safety Applied to Caught-in-between

A. Caught-in-between Injuries and Fatalities

Caught-in-between hazards constitute the final focus hazard category of this program. Proportionately, excavations pose the most hazardous caught-in-between conditions and cave-ins are perhaps the most feared trenching hazard. But other potentially fatal hazards exist, including asphyxiation due to lack of oxygen in a confined space, inhalation of toxic fumes, drowning, etc. Electrocution or explosions can occur when workers contact underground utilities. OSHA requires that workers in trenches and excavations be protected, and that safety and health programs address the variety of hazards they face. Heavy equipment with moving swinging and crushing parts are also hazardous and part of this category.

The most common caught-in-between cause of injuries and fatalities are:

- Trench/excavation collapse.
- Rotating equipment.
- Unguarded parts.
- Equipment rollovers.
- Equipment maintenance.
- Rigging accidents.
B. Sample Caught-in-between System of Safety

- Are workers exposed to crushing-type hazards?
- Does the company have an excavation program?
- Does company have a Lock-out Tag-out program?
- Are workers trained in how to rig materials to be lifted?
- Is there an equipment maintenance program?
- Assess all potential stored sources of energy
- Are workers familiar with procedures and do they regularly recognize caught-in-between conditions?

- Write an excavation, lock-out Tag-out, rigging, and material handling program.
- Purchase shoring, rigging and LOTO equipment, LOTO.
- Establish written procedure to coordinate with Controlling Entity on their obligations when working with your employees to protect them.
- Designate Competent Persons who understand how workers can become crushed and caught-in-between/

- Rigging Class
- Competent Person Training
- LOTO training.
- Tool box talks

- Perform daily inspections of rigging equipment.
- Review Competent Person daily pre-task inspections of shoring, underpinning etc.
- Frequent communications with protection competent persons.
- End of week employee debriefings
- Accident or incident, near miss investigations

Sample Caught-in-Between Safety System
C. Sample Caught-in-between Job Hazard Analysis

Caught-in-Between Assessment of Hazards

<table>
<thead>
<tr>
<th>Task</th>
<th>Hazard</th>
<th>Control</th>
<th>Means of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working in a trench</td>
<td>1. Trench collapse</td>
<td>1. Shoring, benching, sloping</td>
<td>1. Purchase PPE and train workers when and how to wear and maintain them.</td>
</tr>
</tbody>
</table>
2. Training for workers to recognize caught-in-between hazards | 1. Training through toolbox talk to warn workers of danger of swing radius of mobile crane and fall zones.
2. Controlling Entity performs jobsite notification of Controlled Access Zones. |

Module Five: Caught-in-between

Section Two: Caught-in-between Hazard Recognition and Avoidance

Very often caught-in-between hazards are conditional, based on environmental factors, so emphasis it the training how the environment can impact the occupational situation, emphasizing that improvising, though often ingenious can have tragic consequences.
A. Common Types of Caught-in-between scenarios

- Trench/Excavation Collapse
- Rotating Equipment
- Unguarded Parts
- Equipment Rollovers
- Equipment Maintenance
- Rigging accidents

B. Some Rules concerning excavations

- All trenching operations will be performed under the supervision of a competent person.
- Establish locations of underground utilities before digging.
- Provide a means of egress/access when a trench reaches a depth of 4 feet that is not be more than 25 feet lateral distance from a worker’s reach.
- Ladder top rails must extend at least 3 feet above grade and be secured from displacement.
- All trenches where workers will enter 5 feet or more deep must be protected from collapse according to OSHA regulations.
- Documented soil classification must be performed by the competent person to determine type of soil and necessary protection. (Type A, Type B, Type C soil classification).
- Trenches must be inspected daily by a competent person and after the occurrence of rain or other changing conditions.
- Trenches greater than 20 feet must be designed by a professional engineer.
Workers cannot be under loads nor allowed to stand alongside the loading of a vehicle to avoid being struck by spillage. The driver of a vehicle is allowed to be in the cab if the cab is designed to withstand impact of loads.

C. Lock-out Tag-out

Lock-out/Tag-out is important in confined spaces since it is easy to get trapped and hard to escape. Pipelines leading into tanks must be blanked off before entering the space. All electrical and mechanical hazardous energy must be addressed and locked out or tagged as needed.

Sequence of Locking-out:

Lockout Steps

- Notify employees
- Shutdown Equipment
- Isolate Energy
- Attach Lockout Device
- Release Stored Energy
- Verify Lockout
- Service & Maintenance
Sequence of Start-up Procedures:

- All warned to stay clear
- Remove all tools, locks and tags
- Remove, reverse, open or reactivate isolating devices
- Visual check that all is clear
- Start up machine, process or line flow

Module Five: Caught-in-between

Section Three: Caught-in-between Exercise

What went wrong? As a group, examine how this tragedy could have been avoided.

Case Study

This accident occurred when a 48-year old victim, a mechanic, was attempting to disconnect a windrow elevator from an asphalt lay down machine. The mechanic accessed the hitch pins from inside the hopper of the lay down machine, upon removal of the second of two pins, the front of the windrow elevator collapsed, pinning the victim between the hopper bed and the windrow elevator. Victim was not found until approximately 45 minutes later. He was pronounced dead at the scene.
Appendix A
Paying Attention to Angles

Question: What do excavations, fall protection, rigging and cranes and derricks all have in common?

Angles in Excavations:
Angles in Fall Protection

Anchor Loading Varies with Sag Angle of Horizontal Line
Angles in Rigging:

Calculating the Correct Sling Angle

LOAD
Angles in Cranes and Derricks:
Appendix B: Questionnaire Example

Please take a few minutes to complete this survey. Your specific answers will be completely anonymous, but your views, in combination with those of others, are extremely important.

1. **Overall, how satisfied are you with working here?** *(Please circle one number)*

<table>
<thead>
<tr>
<th>Very Dissatisfied</th>
<th>Very Satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2. **Prevention** *(Please circle one number for each statement)*

<table>
<thead>
<tr>
<th>Disagree Strongly</th>
<th>Agree Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

 - *I have received the proper safety training for my job*
 - *I understand all the safety rules and regulations related to my job*
 - *Employee safety is a top concern of company management*
 - *Unsafe conditions are fixed in a timely manner*

3. **Reporting and Monitoring** *(Please circle one number for each statement)*

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - *I feel confident any safety concerns I raise will be addressed*
 - *If I refused to work when I felt I would put myself in danger, I would not get into trouble*
If I reported an unsafe condition to management, I would not get into trouble

4. General Working Conditions (Please circle one number for each statement)

 The equipment I work with is in safe working order 1 2 3 4
 There are no electrical hazards in my immediate work area 1 2 3 4
 Other employees around me always act in a safe manner 1 2 3 4

5. Company Location (Please circle one number for each statement)

 I work in Department A B C D
 I work on Day Shift Evening Shift Night Shift
Appendix C:
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>CIH</td>
<td>Certified Industrial Hygienist (See http://www.abih.org for more information)</td>
</tr>
<tr>
<td>CSP</td>
<td>Certified Safety Professional (See http://www.bcs.org for more information)</td>
</tr>
<tr>
<td>HASP</td>
<td>Health & Safety Plan</td>
</tr>
<tr>
<td>JHA</td>
<td>Job Hazard Analysis</td>
</tr>
<tr>
<td>JSA</td>
<td>Job Safety Analysis</td>
</tr>
<tr>
<td>MOC</td>
<td>Management of Change</td>
</tr>
<tr>
<td>OPHP</td>
<td>Office of Public Health Practice</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety & Health Act or Administration</td>
</tr>
<tr>
<td>PFAS</td>
<td>Personal Fall Arrest System</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>ROPS</td>
<td>Roll-Over Protective Structures</td>
</tr>
<tr>
<td>SPH</td>
<td>School of Public Health</td>
</tr>
<tr>
<td>UMDNJ</td>
<td>University of Medicine & Dentistry of New Jersey</td>
</tr>
<tr>
<td>VPP</td>
<td>Voluntary Protection Program</td>
</tr>
</tbody>
</table>