<< Back to Sampling and Analysis of Crystalline Silica - X-ray Diffraction (XRD)

-DISCLAIMER-
This is not DOL or OSHA controlled material and is provided here for reference only. We take no responsibility for the views, content or accuracy of this information.


Compiled by

Deane K. Smith
Emeritus Professor of Mineralogy
The Pennsylvania State University


General
Cristobalite
Opal
Tridymite
Quartz
Silica Glass
Crystallization of Amorphous Silica
Organic and Biological
Health Effects
Miscellaneous
Regulatory

General
  • Ampian, S.G., and Vitra, R. L. (1992) Crystalline silica overview: Occurrence and analysis. Information Circular, IC-9317. U. S. Bur. Mines. Washington, DC. 27pp.
     
  • Arbey, F. (1979) Les formes de la silice et l’identification des evaporites dans les formations silicifiees. Bull. Cent. Rech. Explor. -Prod. Elf-Aquitaine. V4, 309-365.
     
  • Belonoshko, A. B., Dubrovinsky, L. S., and Dubrovinsky, N. A. (1996) A new high-pressure silica phase obtained by molecular dynamics. Amer. Mineral. V81, 785-788.
     
  • Bustillo, M. A., Fort, R., and Bustillo, M. (1993) Specific surface area and ultramicroporosity in polymorphs of silica. Eur. J. Min. V5, 1195-1204.
     
  • Calvert, S. E. (1983) Sedimentary geochemistry of silicon. In Aston (Ed.) Silicon geochemsitry and biogeochemistry. Academic Press, London.
     
  • Drees, L. R., Wilding, L. P., Smeck, N. E., and Senkayli, A. L. (1989) Silica in soils: Quartz and disordered
    silica polymorphs.
    In Dixon, J. P. (Ed.) Minerals in soil environments. Soil Sci. Soc. Am. Madison, WI. 913-975.
     
  • Fenner, C. N. (1913) The stability relations of the silica minerals, Amer. J. Sci. V36, 331-384.
     
  • Floerke, O. W. (1967) Die Modificationen von SiO2, Fortschr. Min. V44, 181-230.
     
  • Floerke, Q. W. (1959) Regelungserscheinungen bei der paramorphen Unwandlung von SiO2-Kristallen. Z. Krist. V112, 126-135.
     
  • Floerke, O. W., and Schneider, H. (1986) Intergrowth relationships between the SiO2-polymorphs quartz, cristobalite and tridymite in SiO2-rich ceramic materials. Ber. Dtsch. Keram. Ges. V63, 368-372.
     
  • Floerke, O. W., Martin, B., Benda, L., Paschen, S., Bergna, H. E., Roberts, W. I., Welsh, W. A., Ettlinger, M., Kerner, D., Kleinschmit, P., Meyer, J., Gies, H., and Schiffmann, D. (1993) Silica. Ullmann’s Encyclopedia of Industrial Chemistry, VA23, VCH Publishers, Inc., New York, NY.
     
  • Floerke, O. W., Graetsch, H., Martin, B., Roller, K., and Wirth, R. (1991) Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues. Jahrb. Min. Abh. V163, 19-42.
     
  • Floerke, O. W., and Martin, B. (1993) Silica modifications and products. Ullmann’s Encyclopedia of Industrial Chemistry. Vol. A23, 583-598, 654-655.
     
  • Frondel, C. (1962) The system of mineralogy, Vol. III. The silica minerals, 7th ed. J. Wiley and Sons, New York. ___pp.
     
  • Garrison, R. E., Douglass, R. B., Pisciotto, K. E., Issacs, C. M., and Ingle, J. C. (Eds.) (1981) The Monterey Formation and related siliceous rocks of California, Soc. Econ. Paleontol. Min., Pacific Section, Los Angeles, V68, 307-323.
     
  • Gibbs, G. V., Downs, J. W., and Boissen, M. B., Jr. (1994) The Elusive Si-O Bond in Silica, Physical Behavior,
    Geochemistry, and Materials Applications
    in Heaney, P. J, Prewitt, C. T., and Gibbs, G. V. (Eds.) Mineralogical Society of America, Washington, DC., 369-402.
     
  • Harville, D., and Britton, A. (1994) Identification and quantification of silica phases in the Monterey Formation using infrared spectroscopy. A, A. A. P. Bull. V78, 664-665.
     
  • Heaney, P. J. (1994) Structure and Chemistry of the Low Pressure Silica Polymorphs in Silica, Physical Behavior, Geochemistry, and Materials Applications. Reviews in Mineralogy, Volume 29, Mineralogical Society of America, Washington, DC., 1-40.
     
  • Heaney, P. J., and Banfield, J. A. (1995) Structure and chemistry of silica, metal oxides and phosphates. In Guthrie, G. D., and Mossman, B. T. (Eds.) Health effects of mineral dusts. Rev. Min. V28, 185-233.
     
  • Heaney, P. J., Prewitt, C. T. and Gibbs, G. V. (Eds.) (1994) Silica, Physical Behavior, Geochemistry,
    and Materials Applications
    . Reviews in Mineralogy, Volume 29, Mineralogical Society of America, Washington, DC, 606pp.
     
  • Iler, R. K. (1979) The Chemistry of Silica. J. Wiley & Sons, New York, NY, 21-28.
     
  • Klein, C., and Hurlbut, C. S., Jr. (1993) Manual of Mineralogy, 21st Edition, J. Wiley & Sons, New York, NY. ___pp.
     
  • Miles, W. J. (1994) Crystalline silica analysis of Wyoming bentonite by X-ray Diffraction after phosphoric acid digestion. Anal. Chim. Acta. V286, 97-105.
     
  • Miles, W. J., and Hamilton, R. D. (1991) Detection and Measurement of Crystalline Silica in Minerals, in Environmental Management for the 1990’s, Lootens, D. J., (Ed.), SME, Littleton, CO. Pp. 329-333.
     
  • Odom, I. E., and Elzea, J. M. (1991) Environmental aspects of silica minerals in clays and sediments. Clay Min. Soc. Abstracts with Program. V28, 123.
     
  • Rey, T. (1966) Ultrarotabsorption von AlPO4 und SiO2 in Abhangigkeit von Fehlordering und Temperatur. Z. Krist. V123, 263-314.
     
  • Smith, J. V., and Blackwell, C. S. (1984) Nuclear magnetic resonance of silica polymorphs. Nature. V303, 223-225.
     
  • Smith, J. V., and Steele, I. M. (1984) Chemical substitution in silica polymorphs. Neues Jahrb. Min. Mon. V3, 137-144.
     
  • Sosman, R. B. (1965) The phases of silica. Rutgers Univ. Press, New Brunswick, NJ., ___pp.
     
  • Wahl, F. M., Grim. R. E., and Graf, R. B. (1961) Phase transformations in silica as examined by continuous X-ray diffraction. Am. Min. V44, 196-208.
     
  • Wilding, L. P., Smeck, N. E., and Drees, L. R. (1977) Silica in soils: quartz, cristobalite, tridymite and opal. In Dixon, J. B., Weed, S. B., Kittrick, J. A., Milford, M. H., and White, J. L. (Eds.) Minerals in soil environments. 471-552.
Cristobalite
  • Barth, T. F. W. (1932) The cristobalite structures: I High-cristobalite, Am. J. Sci. V23, 350-356.
     
  • Barth, T. F. W. (1932) The cristobalite structures: II Low-cristobalite, Am. J. Sci. V24, 97-110.
     
  • Cruickshank-Banks, D. W., and Stevens, L. (1983) The Formation of Cristobalite from Diatomite - a
    Dilatometric Study,
    Aust. Dental J. V28, 27-29.
     
  • Dollase, W. A. (1965) Reinvestigation of the structure of low cristobalite,
     
  • Downs. R. A., and Palmer, D. C. (1994) The pressure behaviour of α-cristobalite. Am. Min. V79, 9-14.
     
  • Eitel, W. (1957) Structural anomalies in tridymite and cristobalite, Am. Ceram. Soc. Bull. V57, 142-148.
     
  • Endell, J. (1948) Rontgenographischer Nachweis Zwischenzustande be der Bildund Von Cristobaliteaus Klieselguhr beim Erhitzen, [X-ray Analysis Confirming the Existence of Intermediate Phases During Calcination of Diatomaceous-Earth]z J. Kolloidzachr. V11, 19-22.
     
  • Etchepare, J. Merian, M., and Kaplan, P. (1978) Virational normal modes of SiO2. II Cristobalite and tridymite. J. Chem. Phys. V68, 1531-1537.
     
  • Floerke, O. W. (1955) Strukturanomalien bei Tridymit und Cristobalit, Berichte der Deutshcen Keramischen Gesellschaft, v32, 369-381.
     
  • Floerke, O. W. (1955) Zur Frage des “High”-Cristobalit in Opalen, Bentoniten und Glaesern. Neues Jahrb.
    Mineral. Monatasch. V10, 217-224.
     
  • Floerke, O. W. (1956) Uber die Hoch-Tief Umwandlung und die thermische Ausdehnung von Cristobalit. Ber. Deut. Keram. Ges. V33, 319-321.
     
  • Floerke, O. W. (1957) Uber die Roentgen-Mineralanalyse und die thermische Ausdehnung von Cristobalit und Tridymit und uber die Zusammensetzung von Silikamassen. Ber. Deut. Keram. Ges. V34, 343-353.
     
  • Floerke, O. W., Graetsch, H., and Jones, J. B. (1990) Hydrothermal deposition of cristobalite. Neues Jahrb. Min. Mh 81-95.
     
  • Flynn, P. T., Jr., Rosol, A. T., and Kinsala, S. D. (1991) Cristobalite Formation in Diatomaceous Earth--Effects of Time and Temperature, in Environmental Management for the 1990’s, Lootens, D. J., Greenslade, W. M., and Barker, J. M. (Eds), SME,
    Littleton, CO., 367-371.
     
  • Hatch, D. M., and Ghose, S. (1991) The α-β phase transition in cristobalite, SiO2, Phys. Chem. Min. V17, 554-562.
     
  • Hua, G. L., Welberry, T. R., Withers, R. L., and Thompson, J. G. (1983) An electron diffraction and lattice-dynamical study of the diffuse scattering in α-cristobalite. J. Appl. Cryst. V21, 458-465.
     
  • Jones, J. B., and Segnit, E. R. (1972) Genesis of cristobalite and tridymite at low temperatures. J. Geol. Soc. Australia,. V18, 419-422.
     
  • Lally, J. S., Nord, G. L., Jr., Heuer, A, H., and Christie, J. M. (1978) Transformation-induced defects
    in α-cristobalite.
    Proc. 9th Int’l Congress on Electron Microscopy, Electron Microscopy. V1, 476-477.
     
  • Laves, F. (1939) Uber den Einflu( von Spannungen auf die Regelung von Quarz- und Cristobalit Kristallchen in Chalzedon, Quartzin, und Lussatit. Natuurw. V42, 705-717.
     
  • Leadbetter, A. J., Smith, T. W., and Wright, A. F. (1973) Structure of high cristobalite. Nature, Physical Sciences, V244, 125-126.
     
  • Leadbetter, A. J., and Wright, A. F. (1976) The α-β transition in the cristobalite phases of SiO2 and AlPO4 I. X-ray studies. Phil. Mag. V33, 105-112.
     
  • Lukesh, J. (1967)Stability, lattice parameters and thermal expansion of -cristobalite: A discussion. Amer. Mineral. V52, 541-541.
     
  • Mason, B. (1972) Lunar tridymite and cristobalite. Amer. Mineral. V57, 1530-1535.
     
  • Mallard, E. (1890) Sur la tridymite et la cristobalite. Bull. Soc. Fran. Min. V13, 161-180.
     
  • Moehlman, R. S. (1935) Quartz paramorphs after tridymite and cristobalite. Am. Min. V20, 808-810.
     
  • Murata, K. I., and Nakata, K. (1974) Cristobalitic stage in the diagenesis of diatomaceous shale. Science.
    V184, 567-568.
     
  • Nieuwenkamp, W. Von (1935) Die Kristallstruktur des tief-Cristobalits SiO2. Z. Krist. V92, 82-88.
     
  • Nieuwenkamp, W. Von (1937) Uber die Struktur von hoch-Cristobalit. Z. Krist. V96, 454-458.
     
  • O’Keeffe, M, and Hyde, B. G. (1976) Cristobalite and topologically-related structures. Acta Cryst. VB32, 2923-2936.
     
  • Palmer, D. C., Hemley, R. J., and Prewitt, C. T. (1994) Raman spectroscopic study of high-pressure phase transitions in cristobalite. Phys. Chem. Min. V--, __-__.
     
  • Parise, J. B., Yeganeh-Haeri, A., Weidner, D. J.,Jorgensen, J. D., and Saltzberg, M. A. (1994) Pressure-induced phase transition and pressure dependence of crystal structure in low (() cristobalite and Ca/Al-doped cristobalite. J. Appl. Phys. V75, 1361-1367.
     
  • Peacor. D. R. (1973) High-temperature single crystal study of the cristobalite inversion. Z. Krist. V138, 274-298.
     
  • Perotta, N. J., Grubbs, D. K., Martin, N. R., McKinstry, H. A., and Huang, C. Y. (1989) Chemical stabilization of α-cristobalite. J. Am. Ceram. Soc. V61, 441-447.
     
  • Phadke, A. V., and Kshirsagar, L. K. (1986)Thermo-analysis of low cristobalite from Pune, Maharashtra,
    India: Paragenetic significance.
    Z. Geol. Wiss. V14, 559-567.
     
  • Phillips, B. L., Thompson, J. G., Ziao, Y, and Kirkpatrick, R. J. (1993) Constraints on the structure and dynamics of the α-cristobalite polymorphs of SiO2 and AlPO4 from 31P, 27Al and 29Si NMR spectroscopy to 770K. Phys. Chem. Min. V20, 341-352.
     
  • Pluth, J. J., Smith, J. V., and Faber, J. Jr. (1985) Crystal structure of low cristobalite at 10, 293 and 473 K: Variation of the framework geometry with temperature. J. Appl. Phys. V57, 1045-1049.
     
  • Richet, P., Bottinga, Y., Denielou, L., Petitet, J. P., and Tequi, C. (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta. V48, 2639-2658.
     
  • Schmahl, W. W. (1993) Athermal transformation behavior and thermal hysteresis at the SiO2-α-β-cristobalite phase transition. Eur. J. Min. V5, 377-380.
     
  • Schmahl, W. W., Swainson, I. P., Dove, M. T., and Graeme-Barber, A. (1992) Landau free energy and order parameter behaviour of the α/β phase transition in cristobalite. Z. Krist. V201, 125-145.
     
  • Schneider, H. (1986) Chemical composition of tridymite and cristobalite from volcanic and
    meteoritic rocks.
    Neues Jahrb. Min. Mon. V10, 433-444.
     
  • Siefert-Kraus, U. And Schneider, H. (1984) Cation distribution between cristobalite, tridymite, and coexisting glass phases in used silica bricks. Ceram. Internat. V10, 135-142.
     
  • Schneider, H. (1986) Chemical composition of tridymite and cristobalite from volcanic and
    meteoritic tocks.
    Neues Jahrb. Mineral. Montasch. ___, 433-444
     
  • Schneider, H. And Majdic, A. (1984) Iron incorporation in tridymite and cristobalite. Neues Jahrb.
    Mineral. Monatsch. ___, 559-568.
     
  • Spearing, D. R., Farnan, I., and Stebbins, J. F. (1992) Dynamics of the α-β phase transitions in quartz and cristobalite as observed by in-situ high-temperature 29Si and 17O NMR. Phys. Chem. Min. V19, 307-321.
     
  • Swainson, I. P., and Dove, M. T. (1993) Low-frequency floppy modes in α-cristobalite. Phys. Rev. Lett. V71, 193-196.
     
  • Thompson, A. B., and Wennemer, M. (1979) Heat capacities and inversions in tridymite, cristobalite and tridymite-cristobalite mixed phases. Am. Min. V64, 1018-1026.
     
  • Van Valkenburg, A., Jr., and Buie, B. F. (1945) Octahedral cristobalite with quartz paramorphs from Ellora Caves, Hyderabad State, India. Am. Min. V30, 526-535.
     
  • Walker, R. F., Zerfoss, S., Holley, S. F., and Gross, L. J. (1958) Temperature of the inversion in cristobalite. J. Res. N. B. S. V61, 251-261.
     
  • Welberry, T. R., Hua, G. L., and Withers, R. L. (1989) An optical transform and Monte Carlo study of the disorder in β-cristobalite. J. Appl. Cryst. V22, 87-95.
     
  • Wilson, M. J., Russell, J. D., and Tate, J. M. (1974) A new interpretation of the structure of disordered α-cristobalite. Contr. Min. Pet. V47, 1-6.
     
  • Withers, R. I., Thompson, J. G., and Welberry, T. R. (1989) The structure and microstructure of α-cristobalite and its relationship to β-cristobalite. Phys. Chem. Min. V16, 517-523.
     
  • Wolfe, C. W. (19 ) Crystallography of Cristobalite from Ellora Caves, India. Amer. Mineral. V--, 536-537.
     
  • Wright, A. F., and Leadbetter, A. J. (1975) The structures of the β-cristobalite phases of SiO2 and AlPO4. Phil. Mag. V31, 1391-1401.
     
  • Zhang, X., and Org, C. K. (1993) Pressure-induced amorphization of β-cristobalite. Phys. Rev. B. V48, 6865-6870.
Opal
  • Adams, S. I., Hawkes, G. E., and Curzon, E. H. (1991) A solid state 29Si nuclear magnetic resonance study of opal and other hydrous silicas. Am. Min. V76, 1863-1871.
     
  • Bartoli, F., Bittencourt-Rosa, D., Doirisse, M., Meyer, R., Philippy, R., and Samana, J. C. (1990) The role of aluminum in the structure of Brazilian opals. Eur. J. Min. V2, 611-169.
     
  • Blank, R. R., and Fosberg, M. A. (1991) Duripans of Idaho: In situ alteration of eolian dust (loess) to an opal-A/X-ray amorphous phase. Geoderma. V48, 131-149.
     
  • Boudreau, B. P. (1990) Modelling early diagenesis of silica in non-mixed sediments. Deep-Sea Research, Part A: Oceanographic Research Papers. V37, 1543-1567.
     
  • Breese, R. O. Y. (1994) Diatomite in Industrial Minerals and Rocks, Sixth Edition Casr, D. D. (Ed.) DME, Littleton, CO., 397-412.
     
  • Brunier, T. M. (1990) Neutron scattering studies of amorphous materials. PhD Thesis, Univ. Reading, Whiteknights, Reading, UK.
     
  • Cady, S. L. (1994) Microfibrous quartz and crystalline opaline silica varieties: Microstructural characterization by transmission electron microscopy and quantitative X-ray texture analysis. PhD Thesis, Univ. California. Berkeley, CA. 147pp.
     
  • Cady, S. L., and Wenk, H. -R. (1994) Diagenetic microcrystalline opal varieties from the Monterey Formation, CA: HTREM study of the structures and phase transformation mechanisms. (Abstr.) Geol. Soc. Am. Abstracts with Programs. V26, A112.
     
  • Chester, R., and Elderfield, H. (1968) The infrared determination of opal in siliceous deep-sea sediments. Geochim. Cosmochim. Acta. V32, 1128-1140.
     
  • Curtil, L., and Murat, M. (1992) Conditions de formation et microstructure des gels formes par dissolituon non congruente de l’opale dans les solutions basiques. Compte Rendus des l;’Academie des Sciences, Serie 2, Mechanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre. V315, 55-58.
     
  • Darraugh, P. J., Gaskin, A. J., Terrell, B. C., and Sanders, J. V. (1965) Origin of precious opal. Nature. V209, 13-16.
     
  • Deelman, J. C. (1986) Opal-CT in bamboo, Neues Jahrb. Min. Mon. V9, 407-415.
     
  • De Jong, B. H. W. S., van Hoek, J., Veeman, W. S., and Manson, D. V. (1987) X-ray diffraction and 29Si magic-angle spinning NMR of opals: Incoherent long- and short- range order in opal-CT, Am. Min. V72, 1195-1203.
     
  • Elzea, J. M., Odom, I. E., and  Miles, W. J. (1994) Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraciton. Anal. Chim. Acta. V286, 107-116.
     
  • Elzea, J. M. And Rice. S. B. (1996) TEM and X-ray diffraction evidence for cristobalite
    and tridymite stacking sequences in opal.
    Clays and Clay Minerals, v44, 492-500.
     
  • Elzea, J. M., Sprague, E. K., and Odom, I. E. (1991) Characterization of low temperature silica polymorphs in calcium bentonites, sodium bentonites, and Fuller’s earths by XRD, SEM/EDS and TEM. (Abstr.) Clay Min. Soc. Abstracts with Program. V28, 43.
     
  • Floerke, O. W. (1955a) Zur frage des “Hoch-Cristobalit” in Opalen, Bentoniten and Glasern. Neues Jahrb. Min. Mh. 217-233.
     
  • Floerke, O. W. (1973) The genesis of Hyalite. Neues Jahrb. Mineral. Monatsch. - 82-89.
     
  • Floerke, O. W., Flux, S., and Schroder, B. (1985) Hyalith vim Steihwitzhugel bei Kulmain W’tiel des Egergrabens. Neues. Jahrb. Min. Abh. V151, 87-97.
     
  • Floerke, O. W., Graetsch, H., Martin, B., Bochum, K., and Wirth, R. (1991) Nomenclature of Micro- and Non Crystaline Silica Materials, Based on Structure and Microstructure, Neues Jahrb. Mineral. Monatasch. V163, 19-42.
     
  • Floerke, O. W., Hollmann, R., Rad, U. V., and Rosch, H. (1976) Intergrowth and twinning in Opal-CT lepispheres. Contr. Min. Pet. V58, 235-242.
     
  • Floerke, O. W., Jones, J. B., and Segnit, E. R. (1973) The genesis of hyaline. Neues Jahrb.
    Min. Mh, 82-89.
     
  • Floerke, O. W., Jones, J. B., and Segnit, E. R. (1975) Opal-CT crystals. Neues Jahrb. Min. Mh, 369-377.
     
  • Froelich, F. (1989) Deep-sea boigenic silica: New structural and analytical data from infrared analysis--geological implications. Terra Nova, V1, 267-273.
     
  • Gauthier, J. P. (1986) Observation directe par microscopic electronique a transmission de diverse varieties d’opale: II Opal-synthetique. J. Microsc Spectrosc Elektron V11, 37-52.
     
  • Gauthier, J. P., and Bittencourt-Rosa, D. (1991) Crystal-like organization in precious opal. (Abstr) Sixth meeting of the European Union of Geosciences. Terra Abstracts V3, 404.
     
  • Goldberg, E. D. (1958) Determination of opal in marine sediments. J. Marine Res. V17, 178-182.
     
  • Graetsch, H. (1994) Structural charactistics of opaline and microcrystalline silica minerals. In Heaney, P. J., Prewitt, C. T., and Gibbs, G. V. (Eds.) Silica, physical behavior, geochemistry, and materials applications. Reviews in Mineralogy. V29. Min Soc. Am., 209-232.
     
  • Graetsch, H., and Ibel, K. (1996) Small angle neutron scattering by opals. Phys. Chem. Minerals, V23, ___-___.
     
  • Graetsch, H., and Topalovic-Dierdorf, T. (1996) MAS NMR spectra of hyalite from Gran Canaria. Chemie Erde, V56, ___-___.
     
  • Graetsch, H., Floerke, O. W., and Miehe, G. (1985) The nature of water in chalcedonly and opal-C from Brazilian agate geodes. Phys. Chem. Min. V12, 300-306.
     
  • Graetsch, H., Floerke, O. W., and Miehe, G. (1985) Wachstum, Struktur ind Gefuege von Opal-C bis -CT. Z. Krist. V170, 56-58.
     
  • Graetsch, H., Mosset, A., and Gies, H. (1990) XRD and 29Si MAS-NMR study on some non-crystalline silica minerals. J. Non-Cryst. Sol. V119, 173-180.
     
  • Graetsch, H, Floerke, O. W., and Ibel, K. (1991) Neutronenkleinwinkelstreunung von Opalen und Chalzedon (abst.) Z. Krist. Suppl. 3, 86.
     
  • Graetsch,H., Floerke, O. W., and Miehe, G. (1985) The nature of water in chalcedony and opal-C from
    Brazilian agate geodes.
    Phys. Chem. Minerals, V12, 300-306.
     
  • Graetsch, H., Gies, H. And Topalovic, I. (1994) NMR, XRD and IR study on microcrystalline opals. Phys.
    Chem. Min. V21, 166-175.
     
  • Greer, R. T. (1969) Submicron structure of “amorphous” opal. Nature. V224, 1199-1200.
     
  • Guba, I. (1993) Die aussergewoehnlichen Eigenschaften von Kascholong Opal aus einem neuentdeckten Vorkommen im Oman. Deut. Gemmol. Ges. V42, 141-148.
     
  • Guthrie, G. D., Bish, D. L., and Reynolds, R. C. Jr. (1995) Modeling the X-ray diffraction pattern of opal-CT. Am. Min. V80, 869-872.
     
  • Guthrie, G. D., Bish, D. L., Chipera, S. J., and Raymond, R. (1995) Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada. Los Alamos Scientific Laboratory, Los Alamos, NM. Rept. No: LA-12573-MS. 41pp.
     
  • Ibel, K., and Wright, A. (1980) An opal standard for very low momentum transfers in neutron small angle
    scattering.
    ILL Internal Scientific Report 80IB45S.
     
  • Jones, J. B., Biddle, J., and Segnit, E. R. (1966) Opal genesis. Nature. V210, 1353-1354.
     
  • Jones, J. B., Sanders, J. V., and Segnit, E. R. (1964) Structure of opal. Nature. V204, 990-991.
     
  • Jones, J. B., and Segnit, E. R. (1969) Water in sphere type opal. Min. Mag. V37,
    357-361.
     
  • Jones, J. B., and Segnit, E. R. (1971) The nature of opal, I. Nomenclature
    and constituent phases. J. Geol. Soc. Australia, V18, 57-68.
     
  • Jones, R. L. (1969) Determination of opal in soil by alkali dissolution analysis. Soil Sci. Soc. Am.
    Proc. V33, 976-978.
     
  • Kato, K. (1983) Ordering of opal-CT in diagenesis. Geochem. J. V17, 87-93.
     
  • Khimicheva, N. V., Plyusnina, I. I., and Isirikyan, A. A. (1991) Adsorptive properties of the opal-quartz mineral series. Moscow, Univ. Geol. Bull. V46, 28-37. (In Russian).
     
  • Khimicheva, N. V., Plyusnina, I. I., and Isirikyan, A. A. (1991) Sorption properties of the minerals of the opal to quartz range. Vestnik Moskovskogo Universiteta, Seriya 4 Geologiya Moscow, 33-44. (In Russian).
     
  • Kinnunen, K. A., and Ikonen, L. (1991) Opal, a new hydromorphic precipitate type from gravel deposits in southern Finland. Bull. Geol. Soc. Finland. V63, 95-104.
     
  • Langer, K., and Floerke, O. W. (1974) Near infrared absorption spectra (4000 - 9000 cm-1) of opals and the role of water in these SiO2●nH2O minerals. Fortsch. Minral. V52, 17-51.
     
  • Leinen, M. (1977) A normative calculation technique for determining opal in deep-sea sediments. Geochim. Cosmochim. Acta. V41, 671-676.
     
  • Leinen, M. (1985) Techniques for determining opal in deep-sea sediments : A comparison of radiolarian counts and X-ray diffraction data. Marine Micropaleontology. V9, 375-383.
     
  • Levin, I., and Ott, E. (1933) X-ray study of opals, silica glass and silica gel. Z. Krist. V85. 305-318.
     
  • Li, D., Bancroft, G. M., Kasrai, M., Fleet, M. E., Secco, R. A., Feng, X. H., Tan, K. H. And Yang, B. X. (1994) X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs: The structural characterization of opal. Am. Min. V79, 622-632.
     
  • Mayerson, D. A., Dunkel, C. A., Piper, K. A., and Cousminer, H. L. (1995) Identification and correlation of the Opal-CT/quartz phase transition in offshore Central California. A. A. A. G. Bull. V79, 592.
     
  • Mitchell, R. S., and Tufts, S. (1973) Wood opal--a tridymite-like mineral. Amer. Mineral. V58, 717-720.
     
  • Mizota, C., Itoh, M., Kusakabe, M., and Noto, M. (1991) Oxygen isotope ratios of opaline silica and plant opal in three recent volcanic ash soils. Geoderma. V50, 211-217.
     
  • Monroe, E. A., Sass, D. B., and Cole, S. H. (1969) Stacking faults and polytypism in opal, SiO2●nH2O. Acta Cryst. A25, 578-580.
     
  • Mueller, P. J., and Schneider, R. (1993) An automated leaching method for the determination of opal
    in sediments and particulate matter.
    Deep-Sea Research. Part I: Oceanographic Research Papers. V40, 425-444.
     
  • Mueller, P. J., and Schneider, R. (1990) Eine automatisierte Methode zur nasschemischen Bestimmung von Opal in Sinkstoffen und Sedimenten. Nach. Deut. Geol. Ges. V43, 144.
     
  • Patalakha, Ye. I., Smirnov, A. V., and Korobkin, V. V. (1991) Dehydration in opal as a result of disharmonious folding of siliceous strata. Sovetskaya Geologiya. V1991, 93-95.
     
  • Pusey, P. N., van Megen, W., Bartlett, P., Ackerson, B. J., Rarity, J. G., and Underwood, S. M. (1989) Structure of crystals of hard colloid spheres. Phys. Rev. Lett. V63, 2753-2756.
     
  • Radan, S., Seghudi, I., and Bunescu, C. (1992) Opal lepispheres in hydrothermal alteration deposits
    from East Carpathians Neogene alteration zone.
    Roumanian J. Min. V75, Supp. 1, 38.
     
  • Rice, S. B., and Elzea, J. M. (1993) Stacking disorder in the crystaline opals. Clay Min. Soc. Abstracts with Program 137.
     
  • Rice, S. B., Fruend, H., Huang, W. L., Clouse, J. A., and Issacs, C. M. (1995) Application of Fourier transform infrared spectroscopy to silica diagenesis: the opal-A to opal-CT transformation. J. Sed. Res. A65, 639-647.
     
  • Ruland, W. (1971) Small-angle scattering of two-phase systems: Determination and significance of systematid deviations from Porod’s law. J. Appl. Cryst. V4, 70-73.
     
  • Sanders, J. V. (1964) Colour of precious opal. Nature. V204, 1151-1153.
     
  • Sanders, J. V. (1968) Diffraction of light by opals. Acta Cryst. A24, 427-434.
     
  • Sanders, J. V., (1975) Microstructure and crystallinity of gem opals. Amer. Mineral. V60, 749-757.
     
  • Segnit, E. R., Anderson, C. A., and Jones, J. B. (1970) A scanning microscope study of the morphology of opal. Search. V1, 349-351.
     
  • Taijing, L., Zhang, X., Sunagawa, I., and Groves, G. W. (1995) Nanometre scale textures in agate and Beltane opal. Min. Mag. V59, 103-109.
     
  • Tada, R., and Iijima, A. (1983) Identificaiton of mixtures of opalime silica phases and its implication for silica diagenesis. In Iijima, A., Hein, J. R., and Siever, R. (Eds.) Siliceous deposits in the Pacific region. Univ. Tokyo Geol. Inst. Tokyo, Japan. 229-245.
     
  • Taylor, E. M., and Huckins, H. E. (1995) Lithology, fault displacement, and origin of secondary calcium carbonate and opaline silica at trenches 14 and 14D on the Bow Ridge fault at Exile Hill, Nye. County, Nevada. Open File Report, U. S. Geol. Surv. Rept. No.: OF 93-0477.
     
  • Taliaferro, N. L. (1935) Some properties of opal. Am. J. Sci. V30, 450-474.
     
  • Vaniman, D. T., Ebinger, M. H., Bish, D. L., and Chipera, S. J. (1992) Precipitation of calcite, dolomite, sepiolite and silica from evaporated carbonate and tuffaceous waters of southern Nevada, USA. In Kharaka, Y. K., and Maest, A. S. (Eds.) Proc. 7th Int’l Symp, Water-Rock Interactions. Vol. 1. Low Temperature Environments. U. S. Geol. Surv. Menlo Park, CA. 687-691.
Tridymite
  • Ashworth, J. R. (1988) Transformation mechanisms of tridymite to cristobalite studied by transmission electron microscopy, Phys. Chem. Min. V15, 246-251.
     
  • Ashworth, J. R. (1989) Transmission electron microscopy of co-existing tridymite polymorphs, Min. Mag. V53, 89-97.
     
  • Blankenberg, H. J., Schoen, W., and Roesler, H. J. (1980) Die Spurenelemente im Tridymit des Siderophyrs von Rittersgruen/Ertgebirge. Chemie Erde, V39, 98-90.
     
  • Baur, W. H. (1977) Silicon-oxygen bond lengths, bridging angles Si-O-Si and synthetic low tridymite, Acta Cryst. B33, 2615-2619.
     
  • Buerger, M. J., and Lukesh, J. (1942) The tridymite problem. Science. V95, 20-21.

  • Carpenter, M., and Wennemer, M. (1985) Characterization of synthetic tridymites by transmission
    electron microscopy,
    Am. Min. V70, 517-528.
     
  • Cohen, L. H., and Klemment, W. K., Jr. (1980) Tridymite: Effect of hydrostatic pressure to 6 kbar on temperatures of two rapidly reversible transitions, Contrb. Min. Pet. V71, 401-405.
     
  • De Dombal, R. F., and Carpenter, M. A. (1993) High-temperature phase transitions in Steinbach
    tridymite,
    Eur. J. Min. V5, 607-622.
     
  • Dollase, W. A. (1967) The crystal structure at 220°C of orthorhombic high tridymite from the Steinbach meteorite, Acta Cryst, V23, 617-623.
     
  • Dollase, W. A., and Baur, W. H. (1976) The superstructure of meteoric low tridymite solved by computer simulation, Am. Min. V61, 971-978.
     
  • Floerke, O. W. (1966) Wachstum ind Verzwillingung von Tridymit. Kristall und Technik, V1,3,
    405-410.
     
  • Floerke, O. W., and Langer, K. (1972) Hydrothermal recrystallization and transformation of tridymite. Contr. Miner. Petrog., V36, 221-230.
     
  • Floerke, O. W., and Muller-vonmoos, M. (1971) Displazive Tief-Hoch-Umwandlung von Tridymit,
    Z. Krist. V133, 193-302.
     
  • Floerke, O. W., and Nukui, A. (1988) Strukturell Pathologie von Tridymiten, Neues Jahr. Miner. Abb. V158, 175-182.
     
  • Friedlaender, C. G. J. (1970) Tridymite in the gangue of a Pb-Cu-Zn-occurrence. Schseit. Mineral. Petrogr.
    Mitt. V50, 183-199.
     
  • Friedlaender, C. G. J. (1970) Entaxy of tridymite in the gangue of a Pb-Cu-Zn-occurrence. Can. Mineral. V10, 704-709.
     
  • Gibbs, R. E. (1926) The polymorphism of silicon dioxide and the structure of tridymite. Proc. Roy. Soc.
    A113, 351-368.
     
  • Goetz, W. (1962) Intersuchungen am Tridymit des Siderophyrs von Grimuna in Sachsen. Chemie Erde, V22, 167-174.
     
  • Graetsch, H., and Floerke, O. W. (1991) X-ray powder diffraction patterns and phase relationships of tridymite modifications, Z. Krist. V195, 31-48.
     
  • Graetsch, H., and Topalovic-Dierdorf, T. (1996) 29Si MAS NMR spectrum and superstructure of modulated tridymite L3-To(MX-1). Eur. J. Mineral. V8, 103-113.
     
  • Gratten-Bellew, P. E. (1978) Quartz-tridymite transition under hydrothermal conditions, Explor. Mineral. V11, 129-139.
     
  • Hill, V. G., and Roy, R. (1958) Silica structure studies. VI, On tridymite, Trans. Brit. Cer. Soc.
    V57, 496-510.
     
  • Hoffmann, W. And Laves, F. (1964) Zur Polytypie und Polytropie von Tridymit. Naturwill. V51, 335.
     
  • Hoffmann, W., Kockmeyer, M., Lons, J., and Vach, C. (1983) The transformation of monoclinic low-tridymite MC to a phase with an incommensurate superstructure. Fortschr. Min. V61, 96-98.
     
  • Imamura, M., and Matsumoto, T. (1980) Change of X-ray diffraction pattern of tridymite by heating and cooling. J. Mineral. Soc. Japan, V14, 387-396 (in Japanese).
     
  • Kato, K., and Nukui, A. (1976) Die Kristalstruktur des monoklinen Tief-Tridymits. Acta Cryst. B32, 2486-2491.
     
  • Kawai. K., Matsumoto, T., Kihara, K., and Sakurai, K. (1978) The first finding
    of monoclinic tridymite in terrestrial volcanic rocks.
    Min. J. (Japan). V9, 231-235.
     
  • Kihara, K. (1977) An orthorhombic superstructure of tridymite existing between about 105 and 180°C. Z. Krist. V146, 185-203.
     
  • Kihara, K. (1978) Thermal change in unit-cell dimensions, and a hexagonal structure of tridymite. Z. Krist. V148, 237-253.
     
  • Kihara, K. (1980) On the split-atom model for hexagonal tridymite. Z. Krist. V152, 95-101.
     
  • Kihara, K. (1981) Adenda and corrigendum for “On the split-atom model for hexagonal tridymite.” V157,93.
     
  • Kihara, K., Matsumoto, T., and Imamura, M. (1986a) High-order thermal-motion tensor analysis of tridymite. Z. Krist. V172, 39-52.
     
  • Kihara, K., Matsumoto, T., and Imamura, M. (1986b) Structural change of orthorhombic-I tridymite with temperature: A study based on second-order thermal-vibrational parameters. Z. Krist. V177, 27-38.
     
  • Kim, Y. J., Xiao, Y., and Kirkpatrick, R. J. (1992) TEM investigations of tridymite polymorphs. (Abstr.) Trans. Am. Geophys. Union EOS. V73, 620.
     
  • Konnert, J. H., and Appleman, D. E. (1978) The crystal structure of low tridymite. Acta Cryst. B34, 391-403.
     
  • Loens, J., and Hoffmann, W. (1987) Zur Krustallstruktur der inkommensurablen Raumtemperaturphase des Tridymit. Z. Krist. V178, 141-143.
     
  • Nukui, A., and Floerke, O. W. (1987) Three tridymite structural modifications and cristobalite intergrown in one crystal. Amer. Mineral. V72, 167-169.
     
  • Nakui, A., and Nakazawa, H. (1980) Polymorphism in tridymite. J. Min. Soc. Japan. V14(spec. Vol. 2), 364-386 (In Japanese).
     
  • Nakui, A., Nakazawa, H., and Akao, M. (1978) Thermal changes in monoclinic tridymite. Amer. Mineral. V63,
    1252-1259.
     
  • Nakai, A., Yamaoka, S., and Nakazawa, H. (1980) Pressure-induced phase transitions in tridymite. Am. Min. V65, 1283-1286.
     
  • Nakui, A., Yamamoto, A., and Nakazawa, H. (1979) Non-integral phase in tridymite. In: Cowley, J. M., Cohen, J. B., Salamon, M. B., and Wuensch, B. J. (Eds.) Modulated Structures-1979. Am.
    Inst. Phys. Conf. Proc. V53, 327-329.
     
  • Ray, L. L. (1947) Quartz paramorphs after tridymite from Colorado. Am. Min. V32, 643-646.
     
  • Sato, M. (1963) X-ray study of tridymite (1): On tridymite M and tridymite S. Min. J. (Japan). V4, 115-130.
     
  • Sato, M. (1963) X-ray study of tridymite (2): Structure of low tridymite. Min. J. (Japan).
    V4, 131-146.
     
  • Sato, M. (1964) X-ray study of tridymite (3): Unit cell dimensions and phase transition of tridymite, Type S. Min. J. (Japan). V4, 215-225.
     
  • Schneider, H., and Floerke, O. W. (1982) Microstructure, chemical composition, and structural state of tridymite. Neues Jahrb. Min. Mon. V145, 280-290.
     
  • Schneider, H., and Floerke, O. W. (1986) High-temperature transformation of tridymite single-crystals to cristobalite. Z. Krist. V175, 165-176.
     
  • Shadid, K. A., and Glasser, F. P. (1970) Thermal properties of tridymite: 25°C - 300°C. J. Therm. Anal. V2, 181-190.
     
  • Smelik, E. S., and Reeber, R. R. (1990) A study of the thermal behavior of terrestrial tridymite by continuous X-ray diffraction. Phys. Chem. Min. V17, 197-206.
     
  • Tagai, T., and Sadanaga, R. (1972) Tridymite, features of its high-low transitions and structure of its 20-layer polytype. Acta Cryst. A28, s121.
     
  • Tagai, T., Sadanaga, R., Takeuchi, Y., and Takeda, H. (1977) Twinning of tridymite from the Steinbach meteorite. Min. J. (Japan). V8, 382-398.
     
  • Wennemer, M., and Thompson, A B. (1984) Tridymite polymorphs and polytytpes. Schweiz Min. Petrogr. Mitt. V64, 335-353.
     
  • Wennemer, M., and Thompson, A. B. (1984) Ambient temperature phase transitions in synthetic tridymites. Schweiz Min. Petrogr. Mitt. V64, 355-368.
     
  • Xiao, Y, Kirkpatrick, R. J., and Kim, Y. J. (1993) Structural phase transitions of tridymite: A 29Si MAS NMR investigation. Am. Min. V78, 241-244.
Quartz
  • Hamilton, R. D., and Peletis, N. G. (1990) The Determination of Quartz in Perlite by X-ray Diffraction, Adv. X-ray Anal. V23, 493-497.
     
  • Heaney, P. J., and Post, J. E. (1992) The Widespread Distribution of a Novel Silica Polymorph in Microcrystalline Quartz Varieties, Nature, V255, 441-443.
     
  • Kingma, K. J., and Hemley, R. J. (1994) Raman spectroscopic study of microcrystalline silica. Am. Min. V79, 269-273.
     
  • Mallard, E. (1890) Sur la Lussatite, nouvelle variete minerale cristallisee de silice. Bull. Soc. Franc. Min. V13, 63-66.
     
  • Midgley, H. G. (1951) Chalcedony and flint. Geol. Mag. V88, 179-184.
     
  • Miehe, G., Graetsch, H., and Florke, O. W. (1984) Crystal structure and growth fabric of length-fast chalcedony. Phys. Chem. Min. V10, 197-199.
     
  • Renault, J., McKee, C., and Barker, J. (1991) Quantitative X-ray Diffraction Analysis of Trace Quartz in Selected Mineral Products: Standardization II, in Environmental Management in the 1990’s, Lootens, D. J., (Ed.), SME, Littleton, CO. Pp. 361-362.
     
  • Renault, J., McKee, C., and Barker, J. (1992) Calibrating for X-ray Analysis of Trace Quartz, Adv. X-ray Anal. V35, 363-373.
     
  • Seifert, H. (1966) Epitaxy of Macromolecules on Quartz Surfaces, Pergamon Press, New York.
Silica Glass
  • Breese, R. O. Y., and Barker, J. M., Perlite in Industrial Minerals and Rocks, Sixth Edition Casr, D. D. (Ed.) DME, Littleton, CO., 735-749.
     
  • Bridgeman, P. W. (1953) Effects of high pressure on glass. Am. J. Sci. V237, 7-18.
     
  • Devine, R. A. (Ed.) The physics and technology of amorphous SiO2. Plenum, NY.
     
  • Fanderlik, I. (Ed.) (1991) Silica glass and its applications. Elsevier, Amsterdam, 304pp.
     
  • Floerke, O. W. (1959) Uber Kieselsaeurekristalle in Glaesern. Glastechnische Berichte, V32, 1-10.
     
  • Galeener, F. L., and Wright, A. C. (1986) The J. C. Phillips model for vitreous SiO2: A critical appraisal. Sol. State Comm. V57, 677-682.
     
  • Grimley, D. I., Wright, A. C., and Sinclair, R. N. (1990) Neutron scattering from vitreous silica. J. Non-Cryst. Sol. V119, 49-64.
     
  • Hosemann, R., Hentschel, M. P., Schmeisser, U., and Bruckner, R. (1986) Structural model of vitreous silica based on microcrystalline principles. J. Non-Cryst. Sol. V83, 223-234.
     
  • Kubicki, J. D., and Lasaga, A. C. (1988) Molecular dynamics simulations of SiO2 melt and glass: Ionic and covalent models. Am. Min. V73, 941-955.
     
  • O’Keefe, J. A. (1984) Natural glass. J. Non-Cryst. Sol. V67, 1-17.
     
  • Pye, L. D., O’Keefe, J. A., and Frechette, V. D. (1984) Natural Glasses. North-Holland Physics Publ. Amsterdam. 662pp.
     
  • Sykes, D. and Kubicki, J. D. (1996) Four-membered rings in silica and aluminosilicate glasses. Amer.
    Mineral. V81, 2665-272.
     
  • Wright, A. C. (1994) Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies? J. Non-Cryst. Sol. V179, 84-115.
     
  • Wright, A. C., Desa, J. A. E., Weeks, R. A., Sinclair, R. N., and Bailey, D. K. (1984) Neutron diffraction
    studies of natural glasses.
    J. Non-Cryst. Sol. V67, 35-44.
     
  • Wright, A. C., Bachra, B., Brunier, T. M., Sinclair, R. N., Gladden, L. F., and Portsmouth, R. L. (1992)
    A neutron diffraction and MAS-NMR study of the structure of fast neutron irradiated
    vitreous silica.
    J. Non-Cryst. Sol. V150, 69-75.
Crystallization of Amorphous Silica
  • Altree-Williams, S., Byrnes, J. G., and Jordan, B. (1981) Amorphous Surface
    and Quantitative X-ray Powder Diffractometry,
    Analyst, V106, 69-75.
     
  • Bailey, D. A. (1947) Conversion of Silica on ignition, J. Ind. Hyg. & Toxic. V29, 242-249.
     
  • Bettermann, P., and Liebau, F. (1975) The transformation of amorphous silica to
    crystalline silica under hydrothermal conditions,
    Contrib. Min. Petrol. V53, 25-36.
     
  • Calacal, E. L., and Whittemore, O. J. (1987) The Scintering of Diatomaite, Am.
    Ceram. Soc. Bull. V66, 790-793.
     
  • Carr, R. M., and Fyfe, W. S. (1958) Some observations
    on the crystallization of amorphous silica,
    Am. Min. V43, 908-916.
     
  • Correns, C. W., and Nagelschmidt, G. (1933) Uber Faserbau und optische Eigenshaften von Chalzedon. Z. Krist. V85, 199-213.
     
  • Crerar, D. A., Axtmann, E. V., and Axtmann, R. C. (1981) Growth and ripening of silica polymers in aqueous solutions. Geochim. Cosmochim. Acta. V45, 1259-1266.
     
  • Graetsch, H., Floerke, O. W., and Miehe, G. (1987) Structural Defects in microcrystalline silica. Phys. Chem. Min. V14, 249-257.
     
  • Heaney, P. J. (1993) A proposed mechanism for the growth of chalcedony. Contr. Min. Pet. V115, 66-74.
     
  • Jordan, B., O’Connor, B. H., and Deyu, L. (1990) Use of Rietveld Pattern Fitting to Determine the Weight Fraction of Crystalline Material in Natural Low Quartz Specimens, Powd. Diff. V5, 64-69.
     
  • Mozzi, R. L., and Warren, B. E. (1969) The structure of vitreous silica. J. Appl. Cryst. V2, 164-172.
     
  • Nakamura, T., Sameshina, K., Okunaga, K., et al. (1989) Determine of Amorphous Phase in Quartz Powder by X-ray Powder Diffraction, Powd. Diff. V4, 9-13.
     
  • Rimstedt, J. D., and Barnes, H. L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta. V44, 1683-1699.
     
  • Stebbins, J. F. (1991) NMR Evidence for Five-coordinated Silicon in a Silicate Glass at Atmospheric Pressure, Nature, V351, 638-639.
     
  • Williams, L. A., and Crerar, D. A. (1985) Silica diagenesis, II: General mechanisms. J. Sed.
    Petrol. V55, 312-321.
     
  • Williams, L. S., Parks, G. A., Crerar, D. A. (1985) Silica diagenesis, I: Solubility controls. J. Sed. Petrol. V55, 301-311.
Organic and Biological
  • Bendz, G., and Lindquist, I. (Eds.) (1977) Biochemistry of silicon and related problems. Plenum Press, NY. 591pp.
     
  • Bartoli, F. (1985) Crystallochemistry and surface porperties of biogenic opal. J. Soil Sci. V36, 335-350.
     
  • Bartoli, F., and Wilding, L. P. (1980) Dissolution of biogenic opal as a function of its physical
    and chemical properties.
    Soil Sci. Soc. Am. J. V44, 873-878.
     
  • Brewster, N. A. (1981) The determination of biogenic opal in high latitude deep sea sediments. (Abstr.)
    International conference on siliceous deposits in the Pacific region. Univ. Tokyo Tokyo, Japan. 38.
     
  • Evered, D., and O’Connor, M. (Eds.) (1986) Silicon Biochemistry. J. Wiley and Sons. Chichester, UK. 264pp.
     
  • Gies, J. W. (1972) Biogenic opaline silica in selected plant materials.(Abstr.) Agronomy Abstracts, Madison, WI. 155.
     
  • Guthrie, G. D. J., and Heaney, P. J. (1995) Mineralogical characteristics of the silica polymorphs in relation to their biological activity. In Goldsmith, D. F., Wagner, G. R., Saffioti, U., Rabovsky, J., and Leigh, J. (Eds.) Proc. 2nd Int’l Symp. Silica, Silicosis, and Cancer. _____________.
     
  • Hartwig, G., and Hench, L. L. (1972) The Epitaxy of Poly-L-Alanine on L-Quartz and a Glass-Ceramic, J.
    Biomed. Mater. Res. V6, 413-424.
     
  • Kaufman, P. B., Dayanandan, P., Takeoka, Y., Bigelow, W. C., Jones, J. D., and Iler, R. (1981) Silica in shoots of higher plants. In Simpson, T. I., and Volcani, B. E. (Eds.) Silicon and siliceous structures in biological systems. Springer-Verlag, New York, p. 409-449.
     
  • Koopmann, B. (1980) Quantitative determination of silt sized biogenic silica in Atlantic deep-sea sediments. (Abstr.) International Association of Sedimentologists, first European regional meeting. 30-33.
     
  • Kozin, F., Millstein, B., Mandel, G., and Mandel, N. (1982) Silica induced membranolysis: A study of different structural forms of crystalline and amorphous silica and the effects of protein adsorption. J. Colloid Interface Sci. V88, 326-337.
     
  • Langer, A. M. (1978) Crystal Faces and Cleavage Planes in Quartz as Templates in Biological Processes, Quart. Rev. Biophys. V11, 543-575.
     
  • Manein, D., Geiger, B., and Addadi, L. (1994) Differential Adhesion of Cells to Enantiomorphous Crystal Surfaces, Science, V263, 1413-1416.
     
  • Mann, S., and Perry, C. C. (1986) Structural aspects of biogenic silica. In Evered, D., and O’Connor, M. (Eds.) Silicon biochemistry. J. Wiley & Sons, Chichester, UK. 40-58.
     
  • Mortlock, R. A. And Froelich, P. N. (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research. Part A: Oceanographic Research Papers. V36, 1415-1426.
     
  • Nash, T., Allison, A. C., and Harington, J. S. (1966) Physico-chemical properties of silica in relation to toxicity. Nature. V210, 259-261.
     
  • Pease, D. S., and Anderson, J. U. (1969) Opal phytoliths in bouteloua eriopoda torr.-roots and soils. Soil Sci. Soc. Am. Proc. V33, 321-322.
     
  • Sangster, A. G., and Hodson, M. J. (1986) Silica in higher plants. In: Evered, D., and O’Connor,
    M. (Eds.) Silicon Biochemistry, J. Wiley, Chichester, UK. P. 90-111.
     
  • Weiss, A., and Herzog, A. (1977) Isolation and characterization of a silicon-organic complex from plants. In: Bendz, G., and Lindquist, I. (Eds.) Biochemistry of silicon and related problems. Plenum Press, NY.
     
  • Wilding, J. P., and Drees, L. R. (1974) Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clays and Clay Min. V22, 295-306.
Health Effects
  • Abrams, H. K., (1954) Diatomaceous earth pneumoconiosis. Amer. J. Pub. Health. V44, 592-599.
     
  • Bagchi, N. (1992) What makes silica toxic? Brit. J. Indus. Med. V49, 163-166.
     
  • Brieger, M., and Gross, P. (1966) On the Theory of Silicosis: I Coesite, Arch. Environ. Health, V13, 751-757.
     
  • Brieger, M., and Gross, P. (1967) On the Theory of Silicosis: III Stishovite, Arch. Environ. Health, V15, 751-757.
     
  • Caldwell, D. M. (1958) The coalescent lesion of diatomaceous earth pnumoconiosis. Am. Rev. Tuberculosis.
    V77, 644-661.
     
  • Checkoway, H., Heyer, N. J., Demers, P. A., and Breslow, N. E. (1992) A cohort mortality study of workers in the diatomaceous earth industry. Unpublished final report from the Univ. Of Washington. School of Public Health and Community Medicine, Seattle, WA. Submitted to the International Diatomite Producers Assn.
    133pp.
     
  • Craighead, J. E. (Chair) (1988) Silicosis and silicate disease committee NOISH: Diseases associated with exposure to silica and nonfibrous silicate minerals. Arch. Path. Lab. Med. V112, 673-720.
     
  • Craighead, J. E. (1992) Do silica and asbestos cause lung cancer? Arch. Pathol. Lab. Med. V116, 16-20.
     
  • Dunnom, D. D. (Ed.) (1981) Health effects of synthetic silica particulates. Amer. Soc. Test. Mat. Philadelphia, PA. 226pp.
     
  • Ebbesen, P. (1991) Fibrosis and Tumour Development in Dust Innoculated Mice, Eur. J. Cancer. Prev. V1,39-41.
     
  • Fubini, B., Bolis, V and Giamello, E. (1987) The Surface Chemistry of Crushed Quartz Dust in Relation to its Pathogenicity, Inorg. Chim. Acta V138, 193-197.
     
  • Glenn, R. E. (1992) Health effects of crystalline silica. In Griffiths, J. B. (Ed.) 10th “Industrial Minerals” Int’l Congr., Industrial Minerals Division of Metal Bulletin plc, May 1992, Surrey, UK, 112-119.
     
  • Goldsmith, D. F. (1994) Silica Exposure and Pulmonary Cancer, in Epidemiology of Lung Cancer, Samet, J. M., (Ed.), 245-298.
     
  • Goldsmith, D. F., Winn, D. M., and Shy, C. M. (Eds.) (1986) Silica, Silicosis, and Cancer. Praeger, New York, NY. 536pp.
     
  • Guthrie, G. D., Jr. (1992) Biological effects of inhaled minerals. Am. Min. V77, 225-243. Guthrie, G. D., Jr. (1995) Mineralogical Factors Affect the Biological Activity of Crystalline Silica, App. Occup. Environ. Hyg. V10, 1126-1131.
     
  • Guthrie, G. D. J., Jr., and Heaney, P. J. (1995) Mineralogical Characteristics of Silica Polymorphs in relation to their Biological Activities, Scandanavian J. Of Work, Environment, and Health, 21, (Supp 2), 5-8.
     
  • Guthrie, G. D., Jr. and Mossman, B. T. (Eds.) (1993) Health Effects of Mineral Dusts. Reviews in Mineralogy,Volume 28, Mineralogical Society of America, Washington, DC, 584pp.
     
  • Hemenway, D. R., Absher, M., Landesman, M., Trombley, L., and Emerson, R. J. (1986) Differential lung response following silicon dioxide polymorph aerosol exposure. In Goldsmith, D. F., Winn, D. M., and Shy, C. M. (Eds.) Silica, Silicosis and Cancer. Praeger, New York, NY. 105-116.
     
  • King, E. J., Mohanty, G. P., Harrison, C. V., et al. (1953) The Action of Different Forms of Pure Silica on the Lungs of Rats, Br. J. Ind. Med. V19, 9-17.
     
  • Nolan, R. P., Langer, A. M., Harington, J. S., Oster, G., and Selikoff, I. J. (1981) Quartz, Hemolysis as Related to its Surface Functionalities.
     
  • Reiser, K. M., and Last, J. A. (1979) Silicosis and fibrogenesis: Fact and artifact. Toxicology, 13, 51-72.
     
  • Rosner, D., and Markowitz, G. (1991) Deadly dust, silicosis, and the politics of occupational disease in twentieth century America, Princeton Univ. Press. Princeton, NJ. 229pp.
     
  • Ruhl, R., Schmucker, M., and Floerke, O. W. (1990) Silikose druch nichtkristalline Kieselsaeure? Arbietsmed. Sozialmed Praventivmed, V25, 8-15.
     
  • Saffioti, U. (1986) The pathology induced by silica in relation to fibrogenesis and carcinogenesis. In Goldsmith, D. F., Winn, D. M., and Shy, C. M. (Eds.) Silica, Silicosis, and Cancer. Praeger, New York, NY. 287-307.
     
  • Sax, N. I., and Lewis, R. J. (Eds.) (1988) Dangerous Properties of Industrial Materials, 7th. Ed., Vol. III. Man Nostrand Reinhold, New York, NY., pp 3020-3023.
     
  • Selikoff, I. J. (1978) Carcinogenic potential of silica compounds. In Benz, G., and Lindquist, I. (Eds.) Biochemistry of Silicon and Related Problems. Plenum, NY.
     
  • Shi, X., Dalal, N. S., Hu, S. N., et al. The Chemical Properties of Silica Particle Surface in Relation to Silica-Cell Interactions, J. Tox. Env. Health V27, 435-454.
     
  • Vigliani, E. C., and Motlura, G. (1948) Diatomaceous earth silicosis. Brit. J. Indus. Med. V5, 148-350.
Miscellaneous
  • Ball, R. A. (1978) Identification of synthetic opal. Aust. Gemmol. V13, 131-133.
     
  • Ball, R. A. (1977) Natural or synthetic opal? Aust.Gemmol. V13, 104-105.
     
  • Tombs, G. A. (1975) Notes on identification of Gilson synthetic opals. Aust. Gemmol. V12, 179-180.
     
Regulatory
  • ACGIH (1984) Threshold limit values for chemical substances in the work environment adopted by the ACGIH conference for 1984-1985. Amer. Conf. Gov’t. and Indust. Hygenists. Cincinnati, OH.
     
  • Branch of Industrial Minerals (1992) Crystalline silica primer. U. S. Bur. Mines Special
    Publ. 49p.
     
  • IARC (1987) Silica and some silicates. Monogr. 42, International Agency
    for Research on Cancer. Lyon, France. 39-143.
     
  • IARC (1987) Evaluation of the carcinogenic risks to silica and some silicates. Monogr. 43. International Agency for Research on Cancer. Lyon, France.
     
  • IARC (1987) IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs 1-42, Supplement 7, World Health Organization, International Agency for Research on Cancer, Lyon, France, 440pp.
     
  • NIOSH (1974) Criteria for a Recommended Standard—Occupational exposure to crystalline silica.
    Department of Health, Education and Welfare, National Institute for Occupational Safety and Health, Cincinnati OH., ___pp.
     
  • Miles, W. J. (1990) Mining Industry Responds to Crystalline Silica Regulations, Min. Eng. V42,345-348.
     
  • Miles, W. J., and Harben, P. W. (1991) US Crystalline Silica Regulations—Approaching the Detection
    Limits,
    Industrial Minerals, V291, 21-22, 25,27.
     
  • Vu, V. T. (1995) Regulatory approaches to reduce human health risks associated with exposures to mineral fibers. Rev. Min. V28, 545-554.